Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its application to real materials

Vladimir I. Anisimov

Institute of Metal Physics Ekaterinburg, Russia

Contents

Method formulation:

Dynamical Mean-Field Theory (DMFT) Wannier functions as localized orbitals basis Determination of Hamiltonian parameters "Constrained DFT" calculations for Coulomb interaction parameters DFT+DMFT calculation scheme

Contents

Results of DFT+DMFT calculations:

Strongly correlated metal SrVO₃ Metal-insulator transition in V₂O₃ Heavy fermions in d-system Li₂VO₄ **Charge transfer insulator NiO** Metal-insulator transition with pressure in MnO **Correlated covalent insulators FeSi and FeSb2** Novel superconductors LaOFeAs, BaFe₂As₂ Jahn-Teller distortions in KCuF₃ **f**-electrons localization in Ce

Dynamical Mean-Field Theory

Mapping impurity Anderson model on lattice Hubbard model

• includes all many-body correlations !

"single-impurity Anderson model" + self-consistency

Georges and Kotliar (1992)

dynamic mean-field (hybridization function):

 $\Delta(\omega) = \sum_{\mathbf{k}} \frac{|V_{\mathbf{k}}|^2}{\omega - \epsilon_{\mathbf{k}}}$

self-consistency condition:

$$G[\Delta(\omega)] = \sum_{\mathbf{k}} \{\omega - \Sigma[\Delta(\omega)] - t_{\mathbf{k}}\}^{-1}$$
$$\Sigma[\Delta(\omega)] \equiv \Delta(\omega) - G^{-1}(\Delta(\omega)) + \omega$$

Effective impurity model defined by hybridization function is solved with an "impurity" solver, e.g., QMC, NRG, ED,...

Including material specific details

- Model Hamiltonians:
- input parameters (*t*, *U*, ...) unknown
- systematic many-body approach

Anisimov *et al.* (1997) Lichtenstein, Katsnelson (1998) Kotliar, Vollhardt (2004)

• DFT band structure:

$$\varepsilon_{lml'm'}(k) \rightarrow \hat{H}_{LDA}$$

- + Coulomb U $\rightarrow \hat{H}_{LDA+corr}$
- solve $\hat{H}_{\textit{LDA+corr}}$ by DMFT

Density Functional Theory:
material specific: *"ab initio"*

fails for strong correlations

Problem

Wannier functions in real space [1]:

$$W_i(\mathbf{r} - \mathbf{T}) = \sum_{\mathbf{k}} e^{-i\mathbf{kT}} \langle \mathbf{r} | \psi_{i\mathbf{k}} \rangle \longleftarrow$$
 Bloch functions

Advantages of Wannier function basis set:

<Explicit form of the orbitals forming complete basis set

< Localized orbitals

< Orbitals are centered on atoms _

like in Hubbard model

Uncertainty of WF definition for a many-band case:

$$|\psi_{i\mathbf{k}}\rangle = \sum_{j} U_{ji}^{(\mathbf{k})} |\psi_{j\mathbf{k}}\rangle$$

$$\uparrow$$
Unitary matrix

[1] G.H. Wannier, Phys. Rev. **52**, 192 (1937)

WF in k-space – projection of the set of trial functions [2] (atomic orbitals) into Bloch functions subspace :

$$|\widetilde{W}_{n\mathbf{k}}
angle = \sum_{i=N_1}^{N_2} |\psi_{i\mathbf{k}}
angle \langle \psi_{i\mathbf{k}} | \phi_n
angle$$

Bloch functions in DFT basis (LMTO or plane waves):

$$\begin{split} |\widetilde{W}_{n\mathbf{k}}\rangle &= \sum_{i=N_1}^{N_2} \sum_j c_{ji}(\mathbf{k}) c_{ni}^{\star}(\mathbf{k}) |\phi_j^{\mathbf{k}}\rangle = \sum_j \tilde{b}_{jn}^{\mathbf{k}} |\phi_j^{\mathbf{k}}\rangle \\ \text{coefficients of WF expansion in LMTO-orbitals:} \quad \tilde{b}_{jn}^{\mathbf{k}} &= \sum_{i=N_1}^{N_2} c_{ji}(\mathbf{k}) c_{ni}^{\star}(\mathbf{k}) \\ \text{Vanderbildt et al. Phys. Pay P 56, 12947 (1007)} \quad \text{for a set of the se$$

[2] D.Vanderbildt et al, Phys. Rev.B **56**, 12847 (1997)

Example of WF in real space

WF basis set for V-3d (t_{2g}) subband of SrVO₃: XY, XZ, YZ - orbitals

WF in cuprates

Wannier orbitals centered on neighboring copper atoms along the *y* axis.

V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007)

Local Green function:

$$G_{n,n'}^{loc}(\varepsilon) = \frac{1}{V_{IBZ}} \int_{IBZ} d\mathbf{k} \left(\left[(\varepsilon + E_f^{(N)}) 1 - H_0^{WF}(\mathbf{k}) - \Sigma(\varepsilon) \right]^{-1} \right)_{n,n'}$$
Dyson equation defines bath Green function:

$$\mathcal{G}^{-1} = (\overline{G}^{loc})^{-1} + \Sigma$$
Self-consistent condition:

$$G^{loc} = G^{imp} \Rightarrow \Sigma_{new}$$
Impurity problem defined bath Green function is solved by QMC

Strongly correlated metal SrVO₃

V⁺⁴ (d¹) ion in cubic perovskite crystal structure

One electron in partially filled t_{2g} band

I.Nekrasov et al, Phys. Rev. B 72, 155106 (2005), Phys. Rev. B 73, 155112 (2006)

Strongly correlated metal SrVO₃

Strongly correlated metal SrVO3

Strongly correlated metal SrVO₃

$$\frac{\mathrm{m}^*}{\mathrm{m}} = 1 - \frac{\partial \operatorname{Re} \Sigma(\omega)}{\partial \omega} \Big|_{\omega=0} \approx 2$$

$$\widetilde{\varepsilon}(\mathbf{k}) = \left(\frac{\mathbf{m}^*}{\mathbf{m}}\right)^{-1} \varepsilon_0(k)$$

increasing pressure 500 Prototypical Mott insulator. Iso-structural paramagnetic metal to paramagnetic insulator transition critical point 400 with small volume change due to chemical negative pressure. paramagnetic paramagnetic temperature [K] 005 insulator metal corundum corundum structure structure V 0 100 antiferromagnetic monoclinic insulator structure 0 0.04 0.02 0.02 0.04 0.06 0 $(V_{1-x} M_{x})_{2} O_{3}$ — + Cr + Ti 🔶

doping concentration

Mott insulator V_2O_3

Paramagnetic metal to paramagnetic insulator transition with small change in corundum crystal structure parameters

K.Held et al, Phys. Rev. Lett. 86, 5345 (2001), G.Keller et al, Phys. Rev. B 70, 205116 (2004)

Heavy fermions material LiV₂O₄

Heavy-fermions without f-electrons: linear specific heat coefficient γ =420 mJ/molK², effective electron mass *m^{*}/m* =25 below T_K ~28 K

Cubic spinel crystal structure with local trigonal symmetry

Heavy fermions material LiV₂O₄

Sharp quasiparticle peak above the Fermi for T=0 limit (PQMC)

R.Arita et al, Phys. Rev. Lett. 98, 166402 (2007)

Charge transfer insulator NiO

Zaanen et al, PRL 55, 418 (1985)

Charge transfer insulator NiO

Charge transfer insulator in paramagnetic phase. Ni⁺² (d⁸) ion in cubic rock salt crystal structure

J. Kuneš, et al, Phys. Rev. B 75, 165115 (2007)

Charge transfer insulator NiO

Metal-insulator transition in MnO

Metal-insulator transition (paramagnetic insulator to paramagnetic metal) with pressure in MnO accompanied with high-spin to low-spin state transition.

J. Kunes et al, Nature Materials 7, 198 (2008)

Metal-insulator transition in MnO

Metal-insulator transition in MnO

Decreasing volume with pressure increases crystal field spliting Δ_{cf} competing with exchange energy J that results in HS \rightarrow LS transition with volume collapse.

Correlated covalent insulators FeSi and FeSb₂

Transition from non-magnetic semiconductor to paramagnetic metal with temperature increase in FeSi and FeSb₂. Electron doping in Fe_{1-x}Co_xSi results in ferromagnetic metallic state.

Correlated covalent insulators FeSi and FeSb₂

J. Kunes et al, Phys.Rev. B 78, 033109 (2008), V. Mazurenko et al, Phys. Rev. B 81, 125131 (2010)

Tc=26K for F content ~11%

Y. Kanamura et al. J. Am. Chem. Soc. 130, 3296 (2008)]

DMFT results for Hamiltonian and Coulomb interaction parameters calculated with Wannier functions for Fe3d bands only U=0.8 eV J=0.5 eV

DMFT results for Hamiltonian and Coulomb interaction parameters calculated with Wannier functions for all bands (O2p,As4p,Fe3d) U=3.5 eV J=0.8 eV

Moderately correlated regime with significant renormalization for electronic states on the Fermi level (effective mass m^{*}~2) but no Hubbard band.

*BaFe*₂*As*₂*: DMFT results vs ARPES experiment*

Correlations and lattice distortion: KCuF₃

KCuF₃: a prototype e_g (3d⁹) Jahn-Teller system

Crystal structure and Orbital order (OO):

- pseudo cubic perovskite l4/mcm
- cooperative JT distortion below 1000 K
- Neel temperature ~38 K
- $d_{x^2 y^2}$ hole antiferroorbital ordering

metallic solution -> inconsistent with exp

KCuF₃: GGA+DMFT results

Total energy:

→ structural relaxation due to electronic correlations !

Leonov et al., Phys. Rev. Lett. 101, 096405 (2008)

U = 7.0 eV, *J* = 0.9 eV

GGA:

- metallic solution
- total energy almost const for JT distortion < 4 %
- no JT distortion (orbital order) for T > 100 K !
- → inconsistent with experiment GGA+DMFT:
 - *paramagnetic* insulator
 - energy gain of ~ 175 meV
 - antiferro-orbital order
 - optimal JT distortion at 4.2 %
 - JT distortion persists up to 1000 K (melting tem-re)
 - → in good agreement with exp

f-electrons localization in Ce

M.B. Zoelfl et al, Phys. Rev. Lett. 87, 276403 (2001)

- Dynamical mean-field theory (DMFT) is a powerful tool to study correlation effects
- *Ab-initio* definition of correlated orbitals and interaction strength (U) between them based on Wannier functions formalism results in "firstprinciples" DFT+DMFT calculations scheme
- DFT+DMFT method was successful in describing paramagnetic Mott insulators, correlated metals, charge transfer insulators, metal-insulator transitions with pressure and temperature, cooperative Jahn-Teller lattice distortions