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1 Introduction and summary

The aim of this work is to provide the mirror TBA description of one particularly interesting

class of composite gauge-invariant operators in planar N = 4 super Yang-Mills theory and

thus to further advance understanding of the planar AdS/CFT [1] spectral problem.

The operators we are interested in belong to the so-called su(2) sector of the N = 4

theory and they are eigenstates of the one-loop dilatation operator having the following

explicit form [2]

OL =

L−4�

i=1

(−1)
i
tr

�
XX ZiX ZL−i−3

�
. (1.1)

Here X and Z are complex scalars of N = 4 theory and L is an even number.
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Our special interest to this class of operators is motivated by the following reason. At

one loop operators from the su(2) sector can be identified with excitations of the XXX

Heisenberg spin chain [3]. From this point of view, the operators above represent three-

particle (magnon) states, and the simplest of them is an excitation of the spin chain of

length L = 6. Diagonalizing the Heisenberg Hamiltonian for this case, one finds the

corresponding eigenvalue to be 3λ
4π2 , where λ is the ’t Hooft coupling. Thus this state is

in the spectrum of the XXX model and the same conclusion holds for all OL. However,

trying to describe these states by solving the corresponding Bethe Ansatz equations one

encounters a problem – the magnons must have their rapidities uj at distinguished positions

in the complex plane, namely at1 −i, 0, i [4, 5]. As a result, the scattering matrices entering

the Bethe Ansatz are singular and the energies of such states are ill-defined2. This problem

is, of course, well known and one natural way to cure it is to introduce a regularization by

means of a twist, which we call φ. In the gauge theory twisting can be linked to the Leigh-

Strassler deformation of N = 4 super Yang-Mills theory [6] dual to strings in the Lunin-

Maldacena background [7] with a real deformation parameter or their nonsupersymmetric

generalizations [8]. In this physical theory the limit φ → 0 can be taken without any

problem. In the Bethe Ansatz approach one first computes the energy of OL for finite φ

and then takes φ → 0 finding the same result as from the direct diagonalization of the

Hamiltonian. Also, having rapidities of two magnons at singular points ±i can be related

to the fact that OL is a mixture of operators where two fields X are stuck together. In the

terminology of [9] two magnons form an infinitely tight bound state. We will have to say

more about the nature of this bound state later.

Obviously, at one loop introduction of a twist is just a minor feature which distinguishes

OL from other operators. Going to higher loops reveals more dramatic differences. To

analyze the states corresponding to OL at higher loops, we can try to employ the all-loop

asymptotic Bethe Ansatz [2], which is also referred to as the Bethe-Yang equations. In

addition to the twist φ the Bethe-Yang equations depend on the coupling constant g which

we identify with the effective string tension related to λ as g =
√
λ

2π . Expanding the Bethe-

Yang equations in powers of g and starting from the one-loop rapidities 0,±i, one can find

a formal power series solution for uj with coefficients depending on φ. As expected, nothing

special happens until one reaches the first wrapping order. However, at the first wrapping

order g2L one discovers that the limit φ → 0 is singular and the corresponding energy

diverges with φ approaching zero. This behavior should be contrasted to that of regular

states (e.g. Konishi): the latter do not even require to introduce a twist. On the other

hand, from the point of view of the gauge theory we should do not expect any problem

with taking φ → 0 for operators of the type OL.

Certainly, the Bethe Ansatz is only asymptotic, that is it provides a correct description

of the spectrum only up to the first wrapping order; the perturbative behavior of OL serves

as a clear confirmation of this fact. Hence, as for regular operators, we should expect that

1Bethe roots are rescaled by a factor 1/2 in comparison to the XXX standard normalization.
2At one loop one can use Baxter’s Q-operator to describe the corresponding states in terms of dual roots

which lead to the well-defined energy.
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2.1 Singular rapidities in the one-loop Bethe Ansatz

The one-loop spectrum of N = 4 SYM in the su(2) sector is described by the XXX spin

chain [3]. Scaling dimensions can be found by solving the Bethe ansatz equations for

rapidities of M magnons

1 = eipkL
M�

j �=k

Sxxx(uk, uj) ⇒ 1 =

�
uk + i

uk − i

�L M�

j �=k

uk − uj − 2i

uk − uj + 2i
, k = 1, . . . ,M . (2.1)

Invariance under cyclic permutations5 implies

eiP = 1 ⇔
M�

k=1

i+ uk
i− uk

= 1 , P =
M�

k=1

p(uk), p(u) = −i log
i+ u

i− u
. (2.2)

The one-loop scaling dimensions, or energies, are then given by

E = L+ g2
M�

k=1

2

1 + u2k
. (2.3)

Solutions of the Bethe-Yang equations exist also for complex values of the rapidities. It

has been observed [4, 5] that among those there exist solutions with odd M where three

rapidities are placed at

u1 = 0 , u2 = −i , u3 = i , (2.4)

and the remaining M − 3 rapidities come in pairs. The first three rapidities are rather

exceptional: the corresponding momenta read

p1 = π, p2 = −π

2
+ i∞, p3 = −π

2
− i∞, (2.5)

and similarly the individual energy of each of the last two magnons is ill-defined, signaling

the necessity to introduce a regularization. This can equivalently be done by introducing

a regularization parameter ε in the solutions u1 = f1(ε) and u2,3 = ∓i+ f2,3(ε) as in [2, 5]

or by introducing a twist φ in the Bethe-Yang equations as e.g. in [9]:

1 = e−iφ

�
uk + i

uk − i

�L M�

j �=k

uk − uj − 2i

uk − uj + 2i
, k = 1, . . . ,M. (2.6)

Consequently, the cyclicity condition (2.2) becomes P = Mφ/L mod 2π.

Focusing on the case M = 3, where only the three exceptional rapidities are present,

one finds that when L is even (and of course L ≥ 6) solutions can be found so that in the

limit φ → 0 rapidities tend to u1 = 0 and u2,3 = ∓i. This can be done by requiring that

the divergence of momenta for small φ is compensated by a singularity in the S-matrix

Sxxx(u2, u3). Schematically one then has

u1 ∼ φ , u2 ∼ −i− φ− iφL , u3 ∼ +i− φ+ iφL , (2.7)

5In string theory this is equivalent to imposing the level-matching condition.
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where the value as well as the sign of the coefficient of the imaginary correction depends on

L. Then, for all even L, the scaling dimension of the operator or equivalently the energy

of the dual string state is also regular and reads

lim
φ→0

E(φ) = L+ 3g2 . (2.8)

Furthermore, the corresponding one-loop eigenvectors of the dilatation operator can be

found by taking the limit of the Bethe wave-function of the twisted solution, yielding the

N = 4 SYM operators (1.1). Therefore, at one loop, we conclude that there exists a

family of eigenstates of the dilatation operator that can be constructed out of a building

block of three exceptional magnons. These can be thought of as one magnon of maximal

momentum p1 = π and one “infinitely tight” two-magnon bound state having maximal

momentum p2 + p3 = −π. It is interesting to see whether and how this picture changes

beyond one-loop.

2.2 All-loop Bethe-Yang equations and their breakdown

The all-loop Bethe-Yang equations in the su(2) sector [2, 47, 48] including the twist
6
read

1 = e−iφeipkL
M�

j �=k

uk − uj − 2i

uk − uj + 2i
σ−2

(uk, uj) , (2.9)

where L = J +M and σ(uk, uj) is the dressing factor. Here and in what follows we adopt

the notation usual to field theory in which rapidities approach constant values for small g.

Therefore,

x±k = xs
�
uk/g ± i/g

�
, xs(u) =

u

2

�
1 +

�
1− 4/u2

�
, (2.10)

and the relation between rapidity and momentum of a magnon is eipk = x+k /x
−
k . Again,

the equations are supplemented by the level-matching condition ei P = eiMφ/L
.

As before, we focus on three-excitation solutions that for small g tend to the one-loop

configuration of the previous section. From field theory, one expects the scaling dimension

of any operator to admit a well-behaved small coupling expansion. Therefore, one would

hope to resolve any singularity in the Bethe ansatz description by the same means used in
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Let us consider, for simplicity, the case of the shortest operator of length L = 6. Then,

for any non-vanishing value of φ, we can numerically solve (2.9). In figure 2 are plotted

some of these solutions, which for small g describe one particle with real rapidity and a

pair of particles with complex conjugate rapidities. However, as noticed in similar cases

[27], it appears that the solution predicted by the Bethe-Yang equations breaks down at

some critical value of the coupling gcr(φ), which depends on the twist, see figure 2. There

the rapidities are no longer complex-conjugate to each other, and as a result the energy

becomes complex.

6As discussed in more detail in appendix 6.1, the twisted Bethe-Yang equations (together with the

twisted level-matching condition) describe a γ-deformation of N = 4 SYM.
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Figure 2. Plots of the real and imaginary parts of u3 as functions of g for various values of φ. For
any fixed φ the rapidity u3 moves to the branch point −2g + i in the field theory normalization

and reaches it at gcr(φ). Inset represents the inverse function φcr(g) which apparently is a linear

function of g with slope ≈ 3.

We expect the breakdown to be an artifact of the asymptotic nature of the Bethe-Yang

equations. What is striking, and peculiar of these states, is that the value of gcr(φ) where

the breakdown happens goes to zero with φ, and therefore for finite g the twist cannot be

removed no matter how small it is. This scenario also holds for larger values of L.

This raises the question of whether the asymptotic description can be employed at

least perturbatively in g. Expanding (2.9) perturbatively, up to the order g2L−2 one can

find a solution of the form7

ui =
L−1�

n=0

fi,n(φ, L) g
2n

+O(g2L) , (2.11)

where at φ = 0 the coefficients fi,n(0, L) are regular. The energy up to O(g2L) is then

found from the asymptotic formula

Easym
= J +

M�

k=1

�
1 + 4g2 sin

2
(pk/2) , (2.12)

which involves the all-loop dispersion relation only. On general grounds we expect the

asymptotic formula to receive corrections at order g2L due to wrapping effects, and therefore

to differ from the “true” result (which in principle might be computed by field theory

perturbative techniques). For these particular states, however, the asymptotic energies

appear to be divergent in the limit φ → 0 at the wrapping order. For instance, in the

L = 6 case we find

Easym
= 6 + 3g2 − 9

4
g4 +

63

16
g6 − 621

64
g8 − 9

256
(8ζ(3)− 783)g10 + (2.13)

+

�
− 2187

1024φ6
− 3645

8192φ4
+

189783

1310720φ2
+

81

128
ζ(5) +

27

32
ζ(3)− 1223982387

14680064

�
g12 +O(g14,φ)

7The solution for rapidities for L = 6 can be found in the Mathematica file attached to the arXiv

submission of this paper.
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Starting from the wrapping order g2L, the rapidities also become divergent in the limit

φ → 0. This result is remarkable. Indeed, doing perturbative computations in γ-deformed

N = 4 SYM one would find that for small φ the numerical discrepancy between the

asymptotic prediction and the true result is enormous. Obviously this is related to the

fact that wrapping corrections have been neglected so far. Since the asymptotic energy

diverges as φ approaches zero, contribution of wrapping diagrams becomes crucial for

diagonalization of the mixing matrix. This means that for exceptional states (or for states

containing the three exceptional rapidities) a separation of the exact energy into asymptotic

and wrapping parts is ill-defined in the limit of vanishing twist.

In order to properly account for wrapping effects, we will use the mirror TBA. A

convenient approach to excited states TBA is to make use of the contour deformation trick

and of the knowledge of analytic properties of asymptotic Y-functions. For this purpose

it is convenient to formulate TBA equations in the twisted theory for g � φ where the

asymptotic description can be trusted.

3 Twisted TBA

We want to find the mirror TBA description of the exceptional three-magnon configurations

discussed in the previous section, which we expect to exist for any even L ≥ 6. Our strategy

will be to introduce a twist φ and first formulate the TBA equations for the twisted theory,

which corresponds to a γ-deformation of N = 4 SYM.

Fixing a length L, for any nonzero φ and for g small enough we can find the asymptotic

solution of the twisted Bethe-Yang equations (2.9). These in turn allow one to write down

the asymptotic Y-functions in the twisted theory. The details of this construction are

given in appendices 6.2 and 6.3. Knowing the analytic properties of the asymptotic Y-

functions, we can write down the TBA equations, which can then be solved numerically or

perturbatively in g.

3.1 Analytic structure of Y-functions

We are considering here a family of configurations (labeled by even L) with one real ra-

pidity u1 and two complex-conjugate u2,3, depending on g and φ. Since eventually we

are interested in the limit φ → 0, we restrict ourselves to considering a small region of

parameter space,

g � φ � 1 , (3.1)

where the first inequality follows from the necessity of having a real energy solution of the

Bethe-Yang equations.

Different states in the family have slightly different analytic structure for auxiliary

Y-functions, that in turn yield different driving terms in the TBA equations by contour

deformation trick. The procedure to formulate these equations in the case of complex

rapidities has been detailed in [27], and can be applied straightforwardly to our case with

minor L-dependent modifications.
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Therefore, rather than attempting to give a unified description of each state in the

family, we focus on the shortest one, with L = 6. In order not to clutter our treatment

with technicalities, we relegate the discussion of roots of auxiliary Y-functions and the

formulation of the TBA and exact Bethe equations to appendices 6.2 and 6.3 . There we

also briefly comment on how to obtain the TBA system for L ≥ 8.

Here, instead, we focus our attention on some peculiar properties of YQ functions for

states with complex rapidities, which were also found in [27]. A crucial observation there

is that depending on the location of the rapidities on the z-torus some YQ-functions may

have poles inside the analyticity strip. As a result, there is a root of 1 + YQ located in

the vicinity of a pole. If the rapidities lie just outside the analyticity strip, this leads to

the appearance of extra terms in the TBA equations as well as the dispersion relation and

total momentum quantization condition.

This is precisely what happens in the case L = 6 for Y2. Let us indicate from now on the

rapidities of the magnons as u(1)i . They obey the exact Bethe equations 1 + Y1∗(u
(1)
i ) = 0.

Since we have for Y2 that

Y2(u
(1)+
2 ) = ∞ , Y2(u

(1)−
3 ) = ∞ , (3.2)

and u(1)+2 and u(1)−3 are close to the real line then there exist two complex conjugate roots

u(2)2,3 close to u(1)2,3 such that

1 + Y2(u
(2)+
2 ) = 0 1 + Y2(u

(2)−
3 ) = 0 . (3.3)

Similar relations can be written also for Y3 close to u(1)++
2 , but as it turns out, in the case

of rapidities just outside the physical strip we can cast the TBA equations in a form that

depends only on the usual roots u(1)2,3 and the (shifted) roots u(2)2,3.

Taking e.g. the first equality in (3.3) and expanding Y2(u) =
ResY2(u)

u−u(1)+
2

around the pole

at u(1)+2 , one gets

−
�
u(2)2 − u(1)2

�
= ResY2

�
u(1)2

�
+

∂ ResY2
∂u

�
u(1)+2

�
(u(2)2 − u(1)2 ) + . . . . (3.4)

For small residue of Y2 this relation implies that u(2)2 − u(1)2 is of order of ResY2 which for

small g is g2L. It is also worth noticing that due to the presence of the poles (3.2) which

are very close to the real line and almost pinch it, Y2(u) will take large values around

u = Re
�
u(1)2

�
.

3.2 Wrapping corrections for L = 6 at O(g12)

We are interested in the first correction to the energy, which can be found from a pertur-

bative expansion of the energy formula

E = J +

3�

i=1

E(u(1)i )− 1

2π

∞�

Q=1

� ∞

−∞
du

dp̃Q
du

log(1 + YQ) (3.5)

−ip̃2(u
(1)+
2 ) + ip̃2(u

(2)+
2 )− ip̃2(u

(2)−
3 ) + ip̃2(u

(1)−
3 ) ,
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where we used the fact that for L = 6 the rapidities lie just outside the analyticity strip.

Computing E(u(1)i ) to the order g12, it is sufficient to consider the asymptotic expression

of the rapidities found by solving (2.9) and one obviously reproduces (2.13) from the first

two terms in (3.5).

The leading perturbative correction due to wrapping effects can be found by expanding

the remaining terms,

∆E(wrap)
= − 1

2π

∞�

Q=1

� ∞

−∞
du

dp̃Q
du

Y ◦
Q (3.6)

−i
∂p̃2
∂u

(u(1)+2 )ResY ◦
2

�
u(1)+2

�
+ i

∂p̃2
∂u

(u(1)−3 )ResY ◦
2

�
u(1)−3

�
,

where we made use of (3.4) and replaced everywhere YQ by its asymptotic expression Y ◦
Q,

which can be found in appendix 6.2. Furthermore, at this order only the one-loop rapidities

u(1)i are needed.

The final result is similar to the correction one would näıvely expect from Lüscher’s

formula, with the important addition of the terms in the second line which are dictated by

the contour deformation trick. It is worth noticing that, since Y ◦
Q(u) ≥ 0, the contribution

of the first line alone is negative and for this reason can never cancel the small φ divergence

in (2.13).

In the case L = 6 the computation of ∆E(wrap) can be readily performed. As discussed

above, the separation between the poles of Y ◦
2 at u(1)+2 and u(1)−3 vanishes as φ6 for small

g, as indicated by (2.7). Thus, the contributions divergent in the limit φ → 0 come from

the integral of Y ◦
2 and from the residues on the second line of (3.6). Computing ∆E(wrap)

and adding it to the asymptotic contribution, one finds that all divergent terms cancel out,

giving in the limit φ → 0 the following result

E = 6 + 3g2 − 9

4
g4 +

63

16
g6 − 621

64
g8 − 9

256
(8ζ(3)− 783)g10 (3.7)

+

�
−567

128
ζ(9) +

189

64
ζ(5) +

243

128
ζ(3)− 84753

1024

�
g12 +O(g14,φ) .

The cancellation of the divergencies would not be possible without the terms involving u(2)2,3.

This provides the first justification of the energy formula (3.5) which does not rely on the

contour deformation trick.

3.3 Comments on the g14 correction

The cancellation of the divergencies at g12 indicates that, when wrapping corrections are

properly accounted for, the energy should not suffer from any singularity even at higher

loop orders. On the other hand, considering the solution of the asymptotic Bethe ansatz

(2.9), we find that not only the energy at g14 but also the rapidities at g12 are divergent

when the twist is removed. The mirror TBA is expected to render at least the energy

formula finite.

Unfortunately, even for the simplest L = 6 state, computing exactly the wrapping

correction to the energy at order g14 is a non-trivial task, conceptually similar to finding
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the appearance of extra terms in the TBA equations as well as the dispersion relation and

total momentum quantization condition.

This is precisely what happens in the case L = 6 for Y2. Let us indicate from now on the

rapidities of the magnons as u(1)i . They obey the exact Bethe equations 1 + Y1∗(u
(1)
i ) = 0.

Since we have for Y2 that

Y2(u
(1)+
2 ) = ∞ , Y2(u

(1)−
3 ) = ∞ , (3.2)

and u(1)+2 and u(1)−3 are close to the real line then there exist two complex conjugate roots

u(2)2,3 close to u(1)2,3 such that

1 + Y2(u
(2)+
2 ) = 0 1 + Y2(u

(2)−
3 ) = 0 . (3.3)

Similar relations can be written also for Y3 close to u(1)++
2 , but as it turns out, in the case

of rapidities just outside the physical strip we can cast the TBA equations in a form that

depends only on the usual roots u(1)2,3 and the (shifted) roots u(2)2,3.

Taking e.g. the first equality in (3.3) and expanding Y2(u) =
ResY2(u)

u−u(1)+
2

around the pole

at u(1)+2 , one gets

−
�
u(2)2 − u(1)2

�
= ResY2

�
u(1)2

�
+

∂ ResY2
∂u

�
u(1)+2

�
(u(2)2 − u(1)2 ) + . . . . (3.4)

For small residue of Y2 this relation implies that u(2)2 − u(1)2 is of order of ResY2 which for

small g is g2L. It is also worth noticing that due to the presence of the poles (3.2) which

are very close to the real line and almost pinch it, Y2(u) will take large values around

u = Re
�
u(1)2

�
.

3.2 Wrapping corrections for L = 6 at O(g12)

We are interested in the first correction to the energy, which can be found from a pertur-

bative expansion of the energy formula

E = J +

3�

i=1

E(u(1)i )− 1

2π

∞�

Q=1

� ∞

−∞
du

dp̃Q
du

log(1 + YQ) (3.5)

−ip̃2(u
(1)+
2 ) + ip̃2(u

(2)+
2 )− ip̃2(u

(2)−
3 ) + ip̃2(u

(1)−
3 ) ,
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where we used the fact that for L = 6 the rapidities lie just outside the analyticity strip.

Computing E(u(1)i ) to the order g12, it is sufficient to consider the asymptotic expression

of the rapidities found by solving (2.9) and one obviously reproduces (2.13) from the first

two terms in (3.5).

The leading perturbative correction due to wrapping effects can be found by expanding

the remaining terms,

∆E(wrap)
= − 1

2π

∞�

Q=1

� ∞

−∞
du

dp̃Q
du

Y ◦
Q (3.6)

−i
∂p̃2
∂u

(u(1)+2 )ResY ◦
2

�
u(1)+2

�
+ i

∂p̃2
∂u

(u(1)−3 )ResY ◦
2

�
u(1)−3

�
,

where we made use of (3.4) and replaced everywhere YQ by its asymptotic expression Y ◦
Q,

which can be found in appendix 6.2. Furthermore, at this order only the one-loop rapidities

u(1)i are needed.

The final result is similar to the correction one would näıvely expect from Lüscher’s

formula, with the important addition of the terms in the second line which are dictated by

the contour deformation trick. It is worth noticing that, since Y ◦
Q(u) ≥ 0, the contribution

of the first line alone is negative and for this reason can never cancel the small φ divergence

in (2.13).

In the case L = 6 the computation of ∆E(wrap) can be readily performed. As discussed

above, the separation between the poles of Y ◦
2 at u(1)+2 and u(1)−3 vanishes as φ6 for small

g, as indicated by (2.7). Thus, the contributions divergent in the limit φ → 0 come from

the integral of Y ◦
2 and from the residues on the second line of (3.6). Computing ∆E(wrap)

and adding it to the asymptotic contribution, one finds that all divergent terms cancel out,

giving in the limit φ → 0 the following result

E = 6 + 3g2 − 9

4
g4 +

63

16
g6 − 621

64
g8 − 9

256
(8ζ(3)− 783)g10 (3.7)

+

�
−567

128
ζ(9) +

189

64
ζ(5) +

243

128
ζ(3)− 84753

1024

�
g12 +O(g14,φ) .

The cancellation of the divergencies would not be possible without the terms involving u(2)2,3.

This provides the first justification of the energy formula (3.5) which does not rely on the

contour deformation trick.

3.3 Comments on the g14 correction

The cancellation of the divergencies at g12 indicates that, when wrapping corrections are

properly accounted for, the energy should not suffer from any singularity even at higher

loop orders. On the other hand, considering the solution of the asymptotic Bethe ansatz

(2.9), we find that not only the energy at g14 but also the rapidities at g12 are divergent

when the twist is removed. The mirror TBA is expected to render at least the energy

formula finite.

Unfortunately, even for the simplest L = 6 state, computing exactly the wrapping

correction to the energy at order g14 is a non-trivial task, conceptually similar to finding
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The advantage of this strategy is that at the order g12 we can expand (3.12) as

P =

�

i

p(u◦i ) +
�

i

∂p

∂u
(u◦i ) δu

(1)
i − 1

2π

� ∞

−∞
du

dẼQ
du

Y ◦
Q

− i
∂Ẽ2
∂u

(u◦+2 )ResY2(u
◦+
2 ) + i

∂Ẽ2
∂u

(u◦−3 )ResY2(u
◦−
3 ) +O(g14) . (3.14)

where the only non-asymptotic objects appearing in (3.12) are precisely δu(1)i .

Surprisingly, we find that the guess (3.13) is incompatible with total momentum quan-

tization, or in other words that the rapidities found from exact Bethe equations remain

divergent in perturbative theory.

The only way of checking whether the g14 wrapping correction to the energy makes it

finite for small φ is to deal with the full set of TBA equations and expand them around

the asymptotic solution and then in powers of g. This is straightforward but cumbersome,

and is done in appendix 6.4 for the case L = 6. The linearized TBA system ends up to be

more complicated than in the case of the Konishi operator. In particular, the linearized

system for the correction to YM |vw-functions does not decouple from the other auxiliary

equations, which makes it hard to find an analytic solution.

On the other hand, if we focus on the most φ-divergent part of the corrections to

rapidities (which in turn determine the most divergent part of the corrections to the energy)

it is relatively easy to see that once again the wrapping effects precisely cancel the asymptotic

divergence. The compatibility of this cancellation with (3.12) can also be seen as a non-

trivial check of the formula for the total momentum.

In conclusion, we find strong evidence of a general mechanism by which the TBA

description of the exceptional operators can be obtained by introducing a twist φ as a

regulator. Even if the TBA system can be found from the asymptotic data only when

g � φ, and therefore never, strictly speaking, at φ = 0, the resulting physical predictions

will be regular in φ when wrapping effects are accounted for. Therefore, we can compute

the perturbative energy for small φ and then take the limit φ → 0 in the final result.

Even if in principle a similar strategy could be repeated to find energies at finite g, this

would require to (numerically) solve the full TBA system for several values of φ in order

to extrapolate to φ → 0 result. This would be practically unfeasible, and it is therefore

important to look for an alternative TBA description of these operators, which does not

resort to introducing a regulator.

4 TBA with exceptional rapidities

The twisted TBA approach provides a way to compute the anomalous dimensions of ex-

ceptional operators in perturbative gauge theory. It leaves however open a question of

determining the dimensions at any value of the coupling constant. In this section we pro-

pose a set of TBA equations which allows one to calculate the dimensions of these operators

at any value of λ.

The main idea is that since an exceptional operator is dual to a string theory state

which is composed of a fundamental particle and a two-particle bound state with maximum
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Yo-function Zeroes Poles

YM |w 02

1 + YM |w −i/g , +i/g −(M + 2)i/g , (M + 2)i/g

Y1|vw 02

1 + YM |vw Mi/g , −Mi/g

Y− −2i/g , 2i/g 02

Y+ 02 , −i/g

1− Y− −i/g , i/g

1− Y+
Y1 02 −i/g , +i/g

Y2 02

YQ , Q ≥ 3 i(Q− 2)/g , −i(Q− 2)/g

Table 1. Relevant roots and poles of asymptotic Y-functions within the mirror region. 02 means
either a double zero or a double pole at 0.

allowed momenta ±π, the rescaled Bethe roots (i.e. in the gauge theory normalization)

for any exceptional state are in fact independent of the coupling constant: urescaled1 =

0 , urescaled2 = −i , urescaled3 = i. The roots u2,3 satisfy the bound state condition, and since

their real part is 0, they are on the cuts of x±s functions. According to [11], they must lie

on the same sides of the cuts, and therefore, we propose that the exact Bethe rapidities (in

the string theory normalization) for any exceptional state are equal to

u1 = +
i0

2
, u2 = − i

g
− i0 , u3 =

i

g
− i0 . (4.1)

With this choice of the signs in front of i0, the fundamental particle and the bound state

composed of u2,3 have momenta +π and −π, respectively, if one uses Mathematica con-

ventions for branch cuts. Then the root u2 lies in the intersection of the mirror and string

regions, and u3 is in the intersection of the string and the second mirror regions. Notice

that it is different from the state analyzed in [27] where the rapidity u3 was in the intersec-

tion of the string and the anti-mirror regions. The location of the rapidities on the z-torus

is shown on figure 1, and in terms of the z-rapidity variable all Y-functions and dispersion

relations are meromorphic in the vicinities of these points.

These rapidities lead to a quite simple analytic structure of asymptotic Y-functions

with double poles and zeroes at the origin of the mirror u-plane, see Table 1, and it is

natural to assume that the exact Y-functions would have the same analytic properties.8

4.1 TBA equations

In this subsection we list the simplified and hybrid TBA equations for the exceptional

states. They can be obtained from the ones discussed in [27] by sending the roots rM

8Let us mention that Y-functions with double poles and zeroes at the origin are typical for boundary

TBA, see e.g. [49–51].
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to 0, and u(1)i , u(2)i to ui. The only exception is the hybrid equations for YQ where one

should take care of the fact that the root u3 is located in the intersection of the string

region and the second mirror region but not in the anti-mirror region as it was in [27]. The

TBA equations below are consistent with the analytic structure of Y-functions in Table 1

supplemented by the conditions Y1∗(0) = Y1∗(−i/g) = Y1∗(i/g) = −1.

Simplified equations for YM |w

log YM |w = 2 logS(
i

g
+v)+log(1+YM−1|w)(1+YM+1|w)�s+δM1 log

1− 1
Y−

1− 1
Y+

�̂ s . (4.2)

Simplified equations for YM |vw

log YM |vw =2δM1 logS(
i

g
+ v) + log(1 + YM−1|vw)(1 + YM+1|vw) � s

+ δM1 log
1− Y−
1− Y+

�̂ s− log(1 + YM+1) � s . (4.3)

Simplified equations for Y±

log
Y+
Y−

= log(1 + YQ) �KQy −
�

i

logS1∗y(ui, v) , (4.4)

log Y+Y− = 2 log
1 + Y1|vw
1 + Y1|w

� s− log (1 + YQ) �KQ + 2 log(1 + YQ) �K
Q1
xv � s

− 4 logS(
i

g
+ v)−

�

i

log
S1∗1
xv (ui, v)2

S2(ui − v)
� s . (4.5)

It is worth mentioning that since the driving terms in the equations above satisfy the

discrete Laplace equation

SQ(v −
i

g
)SQ(v +

i

g
) = SQ−1(v)SQ+1(v) , S0(v) = 1 ,

they can be written as

−
�

i

logS1∗y(ui, v) = − logS1∗y(0, v)− logS2∗y(0, v) , (4.6)

−
�

i

log
S1∗1
xv (ui, v)2

S2(ui − v)
� s = − log

S1∗1
xv (0, v)2

S2(0− v)
� s− 2 logS2∗1

xv (0, v) � s+ logS2(0− v) .

This shows that the driving terms in eqs.(4.4,4.5) can be understood as appearing not

because of the zeroes of 1 + Y1∗ at u = 0 ,−i/g , i/g in the string u-plane but due to the

zeroes of 1 + Y1∗ and 1 + Y2∗ at u = 0 in the string u-plane. It is consistent with the

interpretation of an exceptional state as a bound state of a fundamental particle and a

two-particle bound state with rapidities equal to 0. This interpretation however requires

using integration contours different from the ones described in [27].
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Simplified TBA equations for YQ to be checked

• Q ≥ 3

log YQ = log

�
1 +

1
YQ−1|vw

�2

(1 +
1

YQ−1
)(1 +

1
YQ+1

)
� s . (4.7)

• Q = 2

log Y2 = −2 logS(
i

g
− v) + log

�
1 +

1
Y1|vw

�2

(1 +
1
Y1
)(1 +

1
Y3
)
�p.v s . (4.8)

Hybrid TBA equations for YQ

To make the presentation transparent, we introduce a function which combines the terms

on the right hand side of the hybrid ground state TBA equation (LTBA = J + 2)

GQ(v) = −LTBA
�EQ + log

�
1 + YQ�

�
� (KQ�Q

sl(2) + 2s �KQ�−1,Q
vwx ) (4.9)

+ 2 log
�
1 + Y1|vw

�
� s �̂KyQ + 2 log(1 + YQ−1|vw) � s

− 2 log
1− Y−
1− Y+

�̂ s �K1Q
vwx + log

1− 1
Y−

1− 1
Y+

�̂KQ + log
�
1− 1

Y−

��
1− 1

Y+

�
�̂KyQ .

With the help of GQ, the hybrid TBA equations for YQ read as

log YQ(v) = GQ(v)−
�

i

logS1∗Q
sl(2)(ui, v) + 4 logS �p.v. K

1Q
vwx(−

i

g
, v) (4.10)

− logSQ(−
i

g
− v)SyQ(−

i

g
, v)SQ(−v)SyQ(0, v)SQ(

2i

g
− v)SyQ(

2i

g
, v) .

It is important to stress that since the location of the Bethe rapidities is exactly known

the only parameters in the TBA equations for exceptional operators are the charge J (or

equivalently the operator length L = J + 3) and the coupling constant g. In this respect

these TBA equations are of the same level of complexity as the ones for the ground state

of any integrable model.

4.2 Exact Bethe equations

To construct the TBA equations by using the contour deformation trick one has to assume

that 1 + Y1∗ has zeroes at u = 0 ,−i/g , i/g in the string plane. On the other hand once

the equations have been derived one can use the analytic continuation to calculate Y1 at

these points. Thus, the conditions

Y1∗(0) = −1 , Y1∗(−
i

g
) = −1 , Y1∗(

i

g
) = −1 , (4.11)

on Y1∗ must follow from the TBA equations. This imposes nontrivial consistency conditions

on the TBA equations which we discuss in this subsection.
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equivalently the operator length L = J + 3) and the coupling constant g. In this respect

these TBA equations are of the same level of complexity as the ones for the ground state
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4.2 Exact Bethe equations

To construct the TBA equations by using the contour deformation trick one has to assume

that 1 + Y1∗ has zeroes at u = 0 ,−i/g , i/g in the string plane. On the other hand once
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these points. Thus, the conditions
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on Y1∗ must follow from the TBA equations. This imposes nontrivial consistency conditions

on the TBA equations which we discuss in this subsection.

– 17 –

Simplified TBA equations for YQ to be checked

• Q ≥ 3

log YQ = log

�
1 +

1
YQ−1|vw

�2

(1 +
1

YQ−1
)(1 +

1
YQ+1

)
� s . (4.7)

• Q = 2

log Y2 = −2 logS(
i

g
− v) + log

�
1 +

1
Y1|vw

�2

(1 +
1
Y1
)(1 +

1
Y3
)
�p.v s . (4.8)

Hybrid TBA equations for YQ

To make the presentation transparent, we introduce a function which combines the terms

on the right hand side of the hybrid ground state TBA equation (LTBA = J + 2)

GQ(v) = −LTBA
�EQ + log

�
1 + YQ�

�
� (KQ�Q

sl(2) + 2s �KQ�−1,Q
vwx ) (4.9)

+ 2 log
�
1 + Y1|vw

�
� s �̂KyQ + 2 log(1 + YQ−1|vw) � s

− 2 log
1− Y−
1− Y+

�̂ s �K1Q
vwx + log

1− 1
Y−

1− 1
Y+

�̂KQ + log
�
1− 1

Y−

��
1− 1

Y+

�
�̂KyQ .

With the help of GQ, the hybrid TBA equations for YQ read as

log YQ(v) = GQ(v)−
�

i

logS1∗Q
sl(2)(ui, v) + 4 logS �p.v. K

1Q
vwx(−

i

g
, v) (4.10)

− logSQ(−
i

g
− v)SyQ(−

i

g
, v)SQ(−v)SyQ(0, v)SQ(

2i

g
− v)SyQ(

2i

g
, v) .

It is important to stress that since the location of the Bethe rapidities is exactly known

the only parameters in the TBA equations for exceptional operators are the charge J (or

equivalently the operator length L = J + 3) and the coupling constant g. In this respect

these TBA equations are of the same level of complexity as the ones for the ground state

of any integrable model.

4.2 Exact Bethe equations

To construct the TBA equations by using the contour deformation trick one has to assume

that 1 + Y1∗ has zeroes at u = 0 ,−i/g , i/g in the string plane. On the other hand once

the equations have been derived one can use the analytic continuation to calculate Y1 at

these points. Thus, the conditions

Y1∗(0) = −1 , Y1∗(−
i

g
) = −1 , Y1∗(

i

g
) = −1 , (4.11)

on Y1∗ must follow from the TBA equations. This imposes nontrivial consistency conditions

on the TBA equations which we discuss in this subsection.

– 17 –

Friday, June 29, 2012



where v = �− i
g . Taking the limit � → 0 one finally gets

log Y1(−
i

g
) = −iπ . (4.23)

In the same way one can show that Y1(
i
g ) = −1 (or one can use the Y-system equation

for Y1), and then the condition Y1∗(
i
g ) = −1 can be proven by using the crossing symmetry

relations as was done in [27]. Let us finally mention that it should be possible to show that

the TBA equations imply in addition Y2∗(0) = −1 because the particles with rapidities

±i/g can be thought of as constituents of a two-particle bound state with rapidity equal

to 0. This however requires a careful analytic continuation of the hybrid TBA equation for

Y2 to the string u-plane through the cut at −2i/g, and we will not pursue this here.

Scaling dimensions of exceptional operators

Scaling dimensions of exceptional operators or energies of dual string states are found from

the usual formula

∆− J = E − J =

�

i

E(ui)−
1

2π

� ∞

−∞
du

dp̃Q
du

log(1 + YQ)

=

�
1 + 4g2 +

�
4 + 4g2 − 1

2π

� ∞

−∞
du

dp̃Q
du

log(1 + YQ) , (4.24)

where we used the exceptional rapidities of the particles. This formula shows that at large

g the first two terms in (4.24) which come from the dispersion relation are proportional

to g. On the other hand for finite J and large g the scaling dimension of these operators

should behave as
√
g. Thus, the linear term should be canceled by the contribution coming

from the YQ-functions. This is different from the expected large g behaviour of two-particle

states studied in [25, 29]. It would be interesting to understand if the linear term comes

entirely from the pole contribution of Y2.

4.3 Leading TBA correction up to g10

The proposed TBA equations are based on the assumption that the rapidities of exceptional

states are given exactly by (4.1). These rapidities are obviously very different from the

rapidities of the states in the twisted theory which diverge in the limit φ → 0 at least in

the perturbation theory. Still, the TBA equations should produce the same perturbative

expansion of the scaling dimensions of exceptional operators as the one we obtained from

the twisted TBA equations in the previous section. In this and next subsections we compute

the scaling dimension of the shortest exceptional operator of length L = 6 and show that

it coincides with the twisted TBA result. We will use the gauge theory normalization of

rapidities in which the exact Bethe roots are 0,±i.

Let us recall that the finite-size corrections to the energy of the twisted exceptional

operator for finite φ start exactly at g12 as expected for an operator of length L = 6 from

the su(2) sector. Thus up to g10 one can just use the dispersion relation and the BY

equations. Then, as was shown in the previous section, one gets

Eφ=0 = −9g10ζ(3)

32
+

7047g10

256
− 621g8

64
+

63g6

16
− 9g4

4
+ 3g2 + 6 . (4.25)
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On the other hand if one uses the energy formula (4.24) with the exceptional Bethe roots,

then the contribution coming from the dispersion relation is just given by the first two

terms and its expansion up to g10 produces

Easym =

�
1 + 4g2 +

�
4 + 4g2 ≈ 3591g10

128
− 645g8

64
+

33g6

8
− 9g4

4
+ 3g2 + 6 . (4.26)

The two formulas obviously become different already at the g6 order. Thus the finite-size

corrections in the case of the TBA with exceptional rapidities must appear at the g6 order

which from the field theory point of view is half-wrapping. We know that perturbative

expansion of all YQ-functions begins at g12 and therefore any YQ-function regular on the

real line begins to contribute to the energy at the g12 order. The only exception is Y2-

function which has a double pole at zero (if φ = 0). As a result the perturbative expansion

of the integral
�
du dp̃

du log(1 + Y2) starts at the g6 order. Thus, up to the g10 order one

should get the same energy (4.25) by keeping only Y2 in TBA equations and the energy

formula. Therefore, the formula of interest up to g10 is

E = Easym − 1

2π

�
du

dp̃2
du

log(1 + Y2) (4.27)

where Easym is given by (4.41). Up to the g10 order we only need the coefficient of the

double pole at u = 0 up to the g16 order

Y2(u) =
9g12

�
3g4(8ζ(3) + 15)− 24g2 + 8

�

2048u2
+ const+O(u2) .

Then computing the integral in (4.27) one finds

Epole
= − 1

2π

�
dv

dp̃2
dv

log(1 + Y2) = −9g10ζ(3)

32
− 135g10

256
+

3g8

8
− 3g6

16
, (4.28)

where in Y2 we only kept the 1/u2 term.

Adding (4.28) to (4.41), one gets precisely (4.25).

4.4 Next-to-leading TBA correction at g12

The agreement between the energies observed in the previous subsection should also hold

at the g12 order where one should calculate the usual contributions from all YQ-functions.

In addition one also has to take into account the TBA correction to the coefficient of the

double pole of Y2 which is of the g18 order.

Linearization of the TBA equations

It is well-known that at small g Y-functions get TBA corrections beyond their asymp-

totic form Y ◦. Computing the leading TBA corrections requires linearization of the TBA

equations which can be done by representing any Y-function as follows

Y (u) = Y ◦
(u)

�
1 + Y (u)

�
. (4.29)
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real line begins to contribute to the energy at the g12 order. The only exception is Y2-

function which has a double pole at zero (if φ = 0). As a result the perturbative expansion

of the integral
�
du dp̃

du log(1 + Y2) starts at the g6 order. Thus, up to the g10 order one

should get the same energy (4.25) by keeping only Y2 in TBA equations and the energy

formula. Therefore, the formula of interest up to g10 is

E = Easym − 1

2π

�
du

dp̃2
du

log(1 + Y2) (4.27)

where Easym is given by (4.41). Up to the g10 order we only need the coefficient of the

double pole at u = 0 up to the g16 order

Y2(u) =
9g12

�
3g4(8ζ(3) + 15)− 24g2 + 8

�

2048u2
+ const+O(u2) .

Then computing the integral in (4.27) one finds

Epole
= − 1

2π

�
dv

dp̃2
dv

log(1 + Y2) = −9g10ζ(3)

32
− 135g10

256
+

3g8

8
− 3g6

16
, (4.28)

where in Y2 we only kept the 1/u2 term.

Adding (4.28) to (4.41), one gets precisely (4.25).

4.4 Next-to-leading TBA correction at g12

The agreement between the energies observed in the previous subsection should also hold

at the g12 order where one should calculate the usual contributions from all YQ-functions.

In addition one also has to take into account the TBA correction to the coefficient of the

double pole of Y2 which is of the g18 order.

Linearization of the TBA equations

It is well-known that at small g Y-functions get TBA corrections beyond their asymp-

totic form Y ◦. Computing the leading TBA corrections requires linearization of the TBA

equations which can be done by representing any Y-function as follows

Y (u) = Y ◦
(u)

�
1 + Y (u)

�
. (4.29)
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Since the Bethe roots do not get corrections, the Y ’s have neither zeroes nor poles on

the real line. Then one expands the hybrid TBA equations up to the first order in Yaux

while keeping only the contributions from the asymptotic YQ-functions on the r.h.s. of the

equations. It is clear that leading corrections to any Y are of order g6 or higher, and they

come only from the pole part of Y ◦
2 . Discarding any term of O(g8), we find that only the

following two equations are relevant at the g6 order

Y2 = log(1 + Y ◦
2 ) � (K

22
sl(2) + 2s �K12

vwx) + 4
�
A1|vw Y1|vw

�
� s , (4.30)

YM |vw = AM−1|vwYM−1|vw � s+AM+1|vwYM+1|vw � s− δM1 log(1 + Y ◦
2 ) � s , (4.31)

where we defined the coefficient

AM |vw =
Y ◦
M |vw

1 + Y ◦
M |vw

, M ≥ 1.

The g6 contribution of Y ◦
2 to these equations can be easily computed because for any kernel

K(u, v) regular for real u and v one gets

log(1 + Y ◦
2 ) �K → R◦

2

�
du log(1 +

1

u2
)K(R◦

2 u, v) →
3π

8
g6K(0, v) , (4.32)

where R◦
2 is the square root of the coefficient of the pole of Y ◦

2

Y ◦
2 =

(R◦
2)

2

u2
+ · · · , R◦

2 =
3

16
g6
�
1− 3g2

2
+

3g4

16
(8ζ(3)+9)+

g6

32
(−120ζ(3)−108ζ(5)−55)

�
.

(4.33)

This also proves that the leading TBA corrections to Y-functions are of order g6.

Expansion of the energy formula

Let us now assume that we know Y2 up to the g6 order and compute the energy up to the

g12 order. The expansion of Easym gives

E(12)
asym = −43029g12

512
. (4.34)

The contribution of YQ with Q �= 2 is found from the usual formula

E(Q �=2)
Y = − 1

2π

�

Q �=2

�
duY ◦

Q . (4.35)

Computing the integrals and taking the sum, one obtains

E(Q �=2)
Y = g12

�
135ζ(3)

128
+

297ζ(5)

128
− 567ζ(9)

128
+

358424597369

580608000000

�
(4.36)

To find the contribution of Y2 we represent the integrands in the energy formula as follows:

log(1 + Y2) = log
1 + Y2

1 +
R2

2
u2

+ log
�
1 +

R2
2

u2
�
, (4.37)
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Comparing this formula with (3.7) obtained from the twisted TBA, one gets

E(12) − E(12)
φ=0 =

3

512
g12(12X1(0) + 7− 12 log 2) . (4.47)

Thus the two results coincide if

X1(0) = log 2− 7

12
≈ 0.109814 . (4.48)

We could not prove this equality analytically. Solving the system (4.44) numerically we

find that the equality (4.48) holds with very high precision.

To conclude this section let us point out that the consideration above can be easily

generalized to the exceptional operator of length L = J + 3. The Y2-function begins to

contribute at the gL order. The improved dressing factor contribution can be easily found

at this order, and one gets that the energy of the exceptional operator is just equal to

EL = J +

�
1 + 4g2 +

�
4 + 4g2 − 3

2L−2
gL +O(gL+2

) . (4.49)

It is not difficult to check that at this order the same expression is obtained by using the

twisted state in the limit φ → 0 [2]. One can in principle go all the way till g2L. The only

technically nontrivial part is finding the power series expansion of the dressing phase up

to the gL+2 order.

5 Conclusions

In this work we have provided the mirror TBA description for the exceptional class of gauge

theory operators OL. From the point of view of the Bethe Ansatz the states corresponding

to these operators are singular that is the asymptotic energy diverges at the first wrapping

order in the limit of vanishing twist. On the other hand, in the approach based on Baxter’s

Q-operator, the same state with M = 3 Bethe roots can be described by means of L −
M + 1 = L− 2 dual roots which are all regular at one loop. It would be interesting to see

whether the dual root picture can be implemented at the level of the TBA equations. A

natural starting point here would be to explicitly develop the all-loop Baxter equation in

the su(2) sector in the spirit of [52].

In a certain respect the operators from the family {OL} are even more interesting

than the Konishi operator. Indeed, the fact that their Bethe rapidities are known exactly

must simplify the numerical analysis of the corresponding TBA equations since one does

not need to solve the exact Bethe equations. Also, the rather rigid analytic structure of

Y-functions – the presence of double poles and zeroes – hints that it possibly remains the

same all the way from weak to strong coupling which might help to find a proper ansatz for

Y-functions at strong coupling. This should be contrasted to the case of regular operators,

where the position of zeroes and poles depends on the coupling constant and there are

critical points [25, 29].
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Figure 1. The picture of the z-torus at g = 0.1. Brown and green curves are the boundaries of

the string and (anti-)mirror regions. They intersect at four points which correspond to the branch

points on the string u-plane. Exceptional rapidities are u1 = 0, u2,3 = ∓i/g. Twisted rapidities

v2,3 are located just a bit outside the analyticity strip as happens for e.g. L = 6, while w2,3 are

inside as for e.g. L = 8. Arrows indicate the conjectured motion of the twisted rapidities as φ → 0.

far as φ < φcr(λ) the solution ceases to exist. A characteristic property of φcr(λ) is that

it vanishes in the limit λ → 0. Importantly, one finds that when φ approaches φcr from

above the complex rapidities u2,3 move towards the branch points of the string u-plane at

−2∓ i/g, where the function Y2 develops a double pole. On the z-torus the branch points

correspond to the points of intersection of the boundaries of the string and (anti-)mirror

region, see figure 1. Decreasing the twist below φcr, the only way to smoothly continue the

evolution of u2 and u3 compatible with reality of the energy is to assume that they move

along the cuts of the string u-plane or on the z-torus along the boundaries of the string

region in opposite directions, reaching the positions of the exceptional rapidities at φ = 0.

On the z-torus all the way towards the branch points the rapidities u2 and u3 remain

complex conjugate but they loose this property upon passing them. On the u-plane this

corresponds to the fact that u2 and u3 move along the lower edges of the cuts which reflects

our choice of the string u-plane. In fact, such a behavior of u2,3 is the same as the one

found in [11] for a two-particle BPS bound state at infinite J . Concerning the divergency

of rapidities in the twisted theory, it is (almost) certain that this is just an artifact of the

perturbative expansion. For finite λ the rapidities may have an essential singularity at

φ = φcr such that the limit φ → 0 would produce the exceptional rapidities we conjecture.

For example a term φ e−λ/(φ−φcr(λ))2 leads to poles in φ in perturbative theory while for
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