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motivation

Motivated by Dvali-Gabadadze-Porrati model of gravity. 
Scalar field theory with the properties:

✦  it directly couples to matter, 
- additional (fifth) force, like all scalar-tensor models, modified 
cosmological dynamics, Dark energy, inflation etc

✦  Vainshtein mechanism (like in massive gravity or DGP), 
- the scalar is screened in local measurements

✦  galilean symmetry, invariance under
- motivated by DGP, the cosmological solution of the form,

- loop correction do not produce other terms;

✦  up to second order derivatives in equations of motion,
- no Ostrogradski ghosts

Nicolis et al’09
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galileon lagrangians
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Flat space-time (curvature and the backreaction of the galileon 
onto the metric are neglected)
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equations of motion of galileon

Equations of motion (in flat space-time)
Nicolis et al’09
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However, the perturbations of metric were neglected. 
(metric couples to galileon nonminimally, through the higher derivatives 

=> higher-order derivatives may appear in EOM for metric!)



covariant galileon

Can be cured by adding non-minimal scalar-metric coupling to 
“flat” Galileon

Deffayet et al’09

Indeed, naive covariantization,            , leads to higher-order 
derivative EOMs for         terms.
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covariant galileon (II)

In a curved space time the galilean symmetry is lost

�(x)� �(x) + bµxµ + c

One may consider more general class of theories:

1. No Ostrogradski ghosts 
2. Vainshtein mechanism



generalization of galileon

Deffayet et al’11

Second-order derivative EOMs: 
“generalized” Galileons

or
Horndeski theory

Horndeski’74
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the Vainshtein mechanism

For the Vainshtein mechanism to work it is (generically) sufficient to 
have a non-linear kinetic term (“k-mouflage” gravity),

EB, Deffayet, Ziour et al’09
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spherical symmetry



general case (I)
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general case (II)
EOM is identically zero on flat space time, 

but non-zero on curved background 
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some examples
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decoupling limit of DGP

pure k-essence
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time-varying Newton’s constant



ingredients

action

S =
M2

P

2

�
d4x

⇥
�g (R+ Ls + LNL) + Sm [g̃µ� ,�m] ,

Ls = � (⇥�)2
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eoms
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T (m) = A4(�)T̃ (m) but we neglect variation of the scalar field 
in the r.h.s of the field equation



homogeneous evolution
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homogeneous evolution
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scalar is in cosmological 

Vainshtein regime

|�̇cosm| � H0
Cosmological 
analogue!
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i.e. self-accelerated
scenario
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local effects (I)
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local effects (I)
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small corrections due to additional small constant
in the equation and due to the curvature



local effects (II)
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local effects (II)
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local effects (II)

�cosm(t) = �cosm(t0) + �̇cosm(t0) t.
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second order ODE on �(r)
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       is set by the cosmological
evolution even inside the regions 
where the Vainshtein screening 

operates.
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��Ġ/G
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variation of the Newton constant

variation of the scalar field => variation of the Newton constant 

Einstein frame -> Jordan frame

In general two effects: 
exchange of the scalar degree of freedom and 

rescaling of the coordinates due to the conformal transformation of the metric.

��Ġ/G
�� � 2�⇥̇cosm(t)

|Ġ/G| < 0.02H0Experiment (Lunar Laser Ranging):

|Ġ/G| � �2H0 matter dominated era

|Ġ/G| � �H0 scalar field domination
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ways out?

within the assumptions (unrealistic):

1. The ODE left over after the stationary ansatz does not have a solution;
2. The solution exists but it is unstable: evolves to another solution

violate one of the assumptions:

1. break shift symmetry, for example add a mass term

2. Particular disformal coupling, e.g. TeVeS: no evolution of Newton’s 
constant

m2⇥2 ⇥ ⇥̇min � �HḢ/m2



a note about brane models

DGP model 
equivalent to a scalar-tensor theory of the Galileon type in UV

(in particular in the decoupling limit),

BUT

not fully described by such a theory at cosmological scales 
(IR limit). 

No variation of the Newton constant is found in DGP! Lue&Starkman’03



conclusion

✦ shift-symmetric non-minimally coupled theories are tightly 
constrained (ruled out?)


