



## Extreme Field Limits in the Interaction of Electromagnetic Waves with Matter

#### Sergei V. Bulanov

QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215, Japan

Prokhorov General Physics Institute RAS, Moscow, 119991, Russia



Ginzburg Conference on Physics 28<sup>th</sup> May – 2<sup>nd</sup> June 2012 Lebedev Institute Moscow, Russia

#### **Three Books**

V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (Rergamon, Oxford, 1964)

V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, Oxford, 1970)

V. L. Ginzburg, Applications of electrodynamics in theoretical physics and astrophysics (CRC, 1989)

### Acknowledgment

#### **T. Esirkepov, M. Kando, H. Kiriyama, J. Koga, K. Kondo, A. S. Pirozhkov** *QuBS, JAEA, Kizugawa, Kyoto, Japan*

#### Y. Kato

The Graduate School for Creation of New Photonics Industries, Hamamatsu, Japan

#### S. S. Bulanov

University of California, Berkeley, CA, USA

#### G. Korn

Max Plank Institute of Quantum Optics, Garching, Germany

#### N. B. Narozhny

Moscow Engineering Physics Institute, Moscow, Russia

#### N. N. Rosanov

Institute of Laser Physics, Vavilov State Optical Institute, Saint-Petersburg, Russia

#### P. Chen

Stanford University, CA, USA

### Preface

•The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics there has been a dream on how to reach it on Earth. With the rise of the laser technologies this field becomes feasible through construction of extreme power lasers or/and with the sophisticated usage of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extreme power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime.

• Recently were realized that the laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It was also realized that the Schwinger limit can be reached using an appropriate configuration of laser beams.

• In the experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electron-positron pair creation in vacuum in a multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

### **Photon Science and Technology**



### **Photon Science and Technology**





#### **ELECTRON-POSITRON PLASMA**

#### e<sup>-</sup> - e<sup>+</sup> Plasma in the Terrestrial Laboratories

 Sub-MeV e<sup>+</sup> from radioactive isotopes or accelerators are used in material science:

A. P. Mills, Science 218, 335 (1982); P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60, 701 (1988);
A.W. Hunt et al., Nature (London) 402, 157 (1999); D.W. Gidley, et al., Annu. Rev. Mater. Res. 36, 49 (2006); B. Oberdorfer, et al., Phys. Rev. Lett. 105, 146101 (2010)

e<sup>+</sup> emission tomography:
 M. E. Raichle, Nature (London) 317, 574 (1985)

- Basic antimatter science such as antihydrogen experiments: M. Amoretti, et al., Nature (London) 419, 456 (2002);
  G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002)
- Bose-Einstein condensed positronium:
   P. M. Platzman and A. P. Mills, Phys. Rev. B 49, 454 (1994)

Basic plasma physics:
 C. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333 (2004)

#### e - e+ Plasma in Space:

#### Gamma Ray Bursts etc



Meszaros, P., & Rees, M. J. 1992, MNRAS, 257, 29 Meszaros, P., & Rees, M. J. 1993, ApJ, 405, 278



(e<sup>-</sup> e<sup>+</sup> p γ) - plasma





**R. Blanford talk** 

#### e<sup>-</sup> e<sup>+</sup> pairs created in laser plasmas



#### **Breit-Wheeler process of e<sup>-</sup> e<sup>+</sup> generation**

 $\chi_e = \frac{E}{E_s} \gamma_e \approx 0.3$ 

 $\chi_{\gamma} = \frac{E}{E_{\rm s}} \frac{\hbar \omega_{\gamma}}{m_{\rm s} c^2} \approx 0.15$ 

Breit-Wheeler process of  $e^-e^+$  generation  $\hbar\omega + \hbar\omega' \rightarrow e^+ + e^-$  with  $\sigma_{\omega\omega \rightarrow e^+e^-} \approx \alpha^2 r_e^2$ 

if 
$$\hbar^2 \omega \omega' > m_e^2 c^4$$

Multiphoton inverse Compton $e^- + N\hbar\omega_0 \rightarrow \hbar\omega_\gamma + e^-$ & $\hbar\omega_\gamma + N\hbar\omega_0 \rightarrow e^+ + e^-$ Multiphoton B-W processes $\hbar\omega_\gamma + N\hbar\omega_0 \rightarrow e^+ + e^-$ 

laser pulse

1.6 ps  $a_0 \approx 0.3$ 

γ-rays

30GeV







50 GeV

electron beau

### "Schwinger" mechanism of e et pair creation



The energy is plotted against the momentum and coordinate (the electric field is parallel z-axis). The solution to the Dirac equation shows that the  $\psi$  - function is large only in the regions I and III. In the region II, it decreases exponentially. Therefore the transmission coefficient through region II, which gives the pair creation probability, has the order of magnitude

 $\exp\left(-\pi m_e^2 c^3 \,/\, \left|\,e\,\right|\,E\hbar
ight)$ 

Quasiclassical regime (F. Sauter, 1931)

$$\begin{split} w &= A \exp\left(-\frac{2}{\hbar} \int_{z_1 = -m_e c^2/eE}^{z_2 = +m_e c^2/eE} |p(z)| dz\right) \\ &= A \exp\left(-\frac{4m_e^2 c^3}{|e| E\hbar} \int_{0}^{1} \sqrt{1-\xi^2} d\xi\right) \\ &\propto \exp\left(-\frac{\pi E_s}{E}\right) \end{split}$$

Probability (W.Heisenberg, H.Euler, 1936)

$$w = rac{1}{4\pi^3} iggl( rac{\mid e \mid E\hbar}{m_e^2 c^3} iggr)^2 rac{m_e c^2}{\hbar} iggl( rac{m_e c}{\hbar} iggr)^3 \exp iggl( -rac{\pi m_e^2 c^3}{\mid e \mid E\hbar} iggr)^2$$

### **Upper Limit on the EM wave amplitude**

We reach a limit when the nonlinear QED with the electron-positron pair creation in the vacuum comes into play, at the "Schwinger electric field", which corresponds to so strong electric field that it starts to create the electron-positron pairs at the Compton length  $\lambda_c = \hbar/m_e c$ , i.e.

$$E_{_S}=rac{m_e^2c^3}{e\hbar}=rac{m_ec^2}{e\lambda_{_C}}$$

It corresponds to the intensity

 $\approx 4 \times 10^{29} W / cm^2$ 

O. Klein (1929) F. Sauter (1931) W.Heisenberg, H.Euler (1936) J. Schwinger (1951) E.Brezin, C.Itzykson (1970) V. S. Popov (1971) V.I.Ritus (1979) A. Ringwald (2001) V. S. Popov, Phys. Lett. A 298, 83 (2002)
N. B. Narozhny et al., Phys. Lett. A 330, 1 (2004)
S. S. Bulanov et al., Phys. Rev E 71, 016404 (2005)
S. S. Bulanov et al., JETP, 102, 9 (2006)
A. Di Piazza et al., Phys. Rev. Lett. 103, 170403 (2009)
R. Schutzhold, Adv. Sci. Lett. 2, 121 (2009)
G. V. Dunne et al., Phys. Rev. D 80, 111301(R) (2009)
C. K. Dumlu, G. V. Dunne, Phys. Rev. Lett. 104, 250402 (2010)
R. Ruffini et al., Phys. Rep. 487, 1 (2010)

#### **Rate of Pair Generation**

$$\mathfrak{F} = \frac{\boldsymbol{E}^2 - \boldsymbol{B}^2}{2} = \frac{F_{\mu\nu}^2}{4} = in\nu, \quad \mathfrak{G} = (\boldsymbol{E} \cdot \boldsymbol{B}) = \frac{F_{\mu\nu}F_{\mu\nu}}{4} = in\nu$$
$$\mathfrak{E} = \sqrt{\sqrt{\mathfrak{F}^2 + \mathfrak{G}^2} + \mathfrak{F}}, \quad \mathfrak{B} = \sqrt{\sqrt{\mathfrak{F}^2 + \mathfrak{G}^2} - \mathfrak{F}}$$

are the electric and magnetic fields in the frame where they are parallel

$$W = \frac{e^2 E_s^2}{4\pi^3 \hbar^2 c} \operatorname{eb} \operatorname{coth} \left(\frac{\pi \mathfrak{b}}{\mathfrak{e}}\right) \exp\left(-\frac{\pi}{\mathfrak{e}}\right)$$
$$\mathfrak{b} = \mathfrak{B}/E_s, \quad \mathfrak{e} = \mathfrak{E}/E_s$$
for  $\mathfrak{e} \to 0$  the rate  $W_{e^+e^-} \to 0$   
at  $\mathfrak{b} \to 0$  the rate  $W_{e^+e^-} = \frac{e^2 E_s^2}{4\pi^2 \hbar^2 c} \mathfrak{e}^2 \exp\left(-\frac{\pi}{\mathfrak{e}}\right)$ 

The number of  $\mathbf{e}^+\mathbf{e}^-$  pairs  $N_{e^+e^-} = \iint W_{e^+e^-} dV dt = \frac{c\tau l_x l_y l_z}{64\pi^4 \lambda_c^4} \mathfrak{e}_m^4 \exp\left(-\frac{\pi}{\mathfrak{e}_m}\right)$ 

## The number of electron-positron pairs produced in the focus of a single pulse or two colliding pulses

| I, W/cm <sup>2</sup> | E <sub>0</sub> /E <sub>s</sub> | N <sub>e</sub> , single<br>pulse | N <sub>e</sub> , two<br>pulses |
|----------------------|--------------------------------|----------------------------------|--------------------------------|
| 2.5x10 <sup>26</sup> | 4x10 <sup>-2</sup>             | -                                | 14                             |
| 5x10 <sup>26</sup>   | 5.7x10 <sup>-2</sup>           | -                                | 2.6x10 <sup>7</sup>            |
| 5x10 <sup>27</sup>   | 0.18                           | 25                               |                                |
| 1x10 <sup>28</sup>   | 0.25                           | 3x10 <sup>7</sup>                |                                |

S. S. Bulanov, N. B. Narozhny, V. D. Mur, V.S. Popov, JETP, 102, 9 (2006)

## The number of electron-positron pairs produced in the focus of a single pulse or two colliding pulses

| I, W/cm <sup>2</sup> | E <sub>0</sub> /E <sub>s</sub> | N <sub>e</sub> , single<br>pulse | N <sub>e</sub> , two<br>pulses |
|----------------------|--------------------------------|----------------------------------|--------------------------------|
| 2.5x10 <sup>26</sup> | 4x10 <sup>-2</sup>             | -                                | 14                             |
| 5x10 <sup>26</sup>   | 5.7x10 <sup>-2</sup>           | -                                | 2.6x10 <sup>7</sup>            |
| 5x10 <sup>27</sup>   | 0.18                           | 25                               |                                |
| 1x10 <sup>28</sup>   | 0.25                           | 3x10 <sup>7</sup>                | action                         |
|                      |                                |                                  | The backree takent             |

S. S. Bulanov, N. B. Narozhny, V. D. Mur, V.S. Popov, JETP, 102, 9 (2006)

## The number of electron-positron pairs produced in the focus of a single pulse or two colliding pulses

| I, W/cm <sup>2</sup> | E <sub>0</sub> /E <sub>s</sub> | N <sub>e</sub> , single<br>pulse | N <sub>e</sub> , two<br>pulses                                                                |
|----------------------|--------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| 2.5x10 <sup>26</sup> | 4x10 <sup>-2</sup>             | -                                | 14                                                                                            |
| 5x10 <sup>26</sup>   | 5.7x10 <sup>-2</sup>           | -                                | 2.6x10 <sup>7</sup>                                                                           |
| 5x10 <sup>27</sup>   | 0.18                           | 25                               |                                                                                               |
| 1x10 <sup>28</sup>   | 0.25                           | 3x10 <sup>7</sup>                | esteron, F. P. 2005 1991                                                                      |
|                      |                                |                                  | S.S. Bulanov, A.M. F71-04<br>R. Phys. Rev. phys. Lett. A.<br>R. Ruffiniet al., phys. Lett. A. |

S. S. Bulanov, N. B. Narozhny, V. D. Mur, V.S. Popov, JETP, 102, 9 (2006)



S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, V. S. Popov, Phys. Rev. Lett. 104, 220404 (2010)

# What is better, circular or linear table top accelerators, for reaching the quantum limits?

#### **Electromagnetic cascades induced by pairs**



•A. R. Bell and J. G. Kirk, "Possibility of Prolific Pair Production with High-Power Lasers" Phys. Rev. Lett. 101, 200403 (2008)

•A. M. Fedotov, N. B. Narozhny, G. Mourou, G. Korn, "Limitations on the Attainable Intensity of High Power Lasers" Phys. Rev. Lett. 105, 080402 (2010)

•S.S.Bulanov, T. Zh.Esirkepov, A.Thomas, J.Koga, S.V.Bulanov, "On the Schwinger limit attainability with extreme power lasers"

Phys. Rev. Lett. 105, 220407 (2010)

•E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, H. Ruhl, "Laser Field Absorption in Self-Generated Electron-Positron Pair Plasma" Phys. Rev. Lett. 106, 035001 (2011)

•N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, H. Ruhl "QED cascades induced by circularly polarized laser fields" Phys. Rev. ST Accel. Beams 14, 054401 (2011)

#### $e^{-}e^{+}\gamma$ plasma via the multi-photon B-W process

Key dimensionless Lorentz invariant parameters :

$$a = \frac{e\sqrt{\left(A_{\mu}\right)^{2}}}{m_{e}\omega c} = \frac{eE}{m_{e}\omega c}$$

$$\chi_{e} = \frac{e\hbar\sqrt{\left(F^{\mu\nu}p_{\mu}\right)^{2}}}{m_{e}^{3}c^{4}} = \sqrt{\left(\gamma_{e}\frac{E}{E_{s}} + \frac{p\times B}{m_{e}cE_{s}}\right)^{2} - \left(\frac{p\cdot E}{m_{e}cE_{s}}\right)^{2}} \approx \frac{E}{E_{s}}\frac{p_{\perp}}{m_{e}c}$$
$$\chi_{\gamma} = \frac{e\hbar^{2}\sqrt{\left(F^{\mu\nu}k_{\mu}\right)^{2}}}{m_{e}^{3}c^{4}} = a\frac{\hbar^{2}\omega_{0}\omega_{\gamma}}{m_{e}^{2}c^{4}} \qquad \left[N\omega_{0} + \omega_{\gamma} \rightarrow e^{+}e^{-}\right]$$

### **Probability of pair creation**

$$W_{\parallel}(\chi_{\gamma}) = \frac{3}{32} \frac{e^2 m_e^2 c^3}{\hbar^3 \omega_{\gamma}} \left(\frac{\chi_{\gamma}}{2\pi}\right)^{3/2} \exp\left(-\frac{8}{3\chi_{\gamma}}\right) \quad \text{for } \chi_{\gamma} \ll 1$$

$$W_{\parallel}(\chi_{\gamma}) = \frac{27 \,\Gamma^7(2/3)}{56\pi^5} \frac{e^2 m_e^2 c^3}{\hbar^3 \omega_{\gamma}} \left(\frac{3\chi_{\gamma}}{2}\right)^{2/3} \quad \text{for } \chi_{\gamma} \gg 1$$

The number of absorbed laser photons :  $N_l \approx a$ 

Photon mean - free - path before the pair is created :  $l_{m.f.p} = \frac{\lambda_0}{0.2\pi\alpha a} \approx 220 \frac{\lambda_0}{a}$ 

A. I. Nikishov and V. I. Ritus, Sov. Phys. JETP 19} 529 (1964); ibid., 1191 (1964);

A. I. Nikishov, and V. I. Ritus, 'Interaction of Electrons and Photons with a Very Strong Electromagnetic Field', Sov. Phys. Usp. 13, 303 (1970)

V. I. Ritus, 'Quantum Effects of the Interaction of Elementary Particles with an Intense Electromagnetic Field', Tr. Fiz. Inst. Akad. Nauk SSSR 111, 5 (1979)

K. T. McDonald, "Fundamental Physics During Violent Acceleration", AIP Conf. Proceed. 130, 23 (1985)

A. I. Titov, H. Takabe, B. Kampfer, A. Hosakae et al., "Enhanced subthreshold e+e- production in short laser pulses", Phys. Rev. Lett. (2012)

## **Colliding EM Waves:**



## **Colliding EM Waves:**



Linearly Polarized

energy balance  

$$\mathcal{E}^{+} \approx \omega_{0} m_{e} c^{2} a_{0} = \mathcal{E}^{-} \approx \varepsilon_{rad} \omega_{0} m_{e} c^{2} \gamma_{e}^{2}$$
  
 $\varepsilon_{rad} = 2\pi r_{e} / \lambda \approx 10^{-8}$   
radiation friction important at :

 $a_0 = 2\varepsilon_{rad}^{-1}$ i.e. at  $E = 3m_e^2 c^4 / e^3 = 3 \times 137E_s$ 

quantum recoil important at :  $\hbar \omega_m \approx m_e c^2 \gamma_e$  i.e.  $a \approx m_e c^2 / 0.21 \hbar \omega_0$ i.e. at  $I \gg 10^{29}$  W/cm<sup>2</sup>

6/1/2012

Ya. B. Zel'dovich, A.F. Illarionov, Sov. Phys. JETP 34, 467 (1972);
S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. K. Koga, S. S. Bulanov, "Lorentz-Abraham-Dirac vs Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)", Phys. Rev. E, 84, 056605 (2011)

#### **Threshold for the e<sup>-</sup> - e<sup>+</sup>** Avalanche:

**Circularly Polarized** 

V.S.

**Linearly Polarized** 

$$\chi_e \approx \frac{E}{E_s} \frac{p_\perp}{m_e c} \approx \frac{E}{E_s} \left(\frac{a_0}{\varepsilon_{rad}}\right)^{1/4} \sin \varphi \approx 1,$$

where  $\sin \varphi \approx 1/\varepsilon_{rad} \gamma_e^3$ , at  $a_0 > \varepsilon_{rad} a_s^2 \approx 1.5 \times 10^3$ 

with 
$$a_s = \frac{m_e c}{\hbar \omega_0} \approx 4.1 \times 10^5$$

avalanche threshold :

 $I^* = 4 \times 10^{24} \, \text{W/cm}^2$ 

 $\chi_e \approx \chi_\gamma \approx \frac{E}{E_s} \Rightarrow$  no any avalanches when particle velocity is parallel to its acceleration

INSTABILITY OF ELECTRON TRAJECTORY ??!!

We must take into account small but finite magnetic field

#### **3D EM configuration TM - mode**



The vector field shows r- and z-components of the poloidal electric field in the plane (r,z): E(r,z)

The color density show toroidal magnetic field distribution  $B_{\phi}(r,z)$ 

The first Poincare invariant  $\mathcal{F}_{TM}/a_0^2 = (\mathbf{E}^2 - \mathbf{B}^2)/2a_0^2$ 

### Threshold for e<sup>-</sup> e<sup>+</sup> avalanche in 3D TM configuration



INSTABILITY : e<sup>-</sup>(e<sup>+</sup>) trajectory in r, z - plane  $\omega_0 t \ll 1, a_0 \gg 1$   $p_z(t) = m_e c \ a_0 \omega_0 t,$   $p_r(t) = m_e c \ \frac{a_0 k_0 r_0 \omega_0 t}{2^{3/2}} I_1\left(\frac{\omega_0 t}{2^{3/2}}\right),$   $r(t) = \frac{a_0 r_0}{2^{3/2}} I_1\left(\frac{\omega_0 t}{2^{3/2}}\right) + \frac{a_0 r_0 \omega_0 t}{16} \left[ I_0\left(\frac{\omega_0 t}{2^{3/2}}\right) + I_2\left(\frac{\omega_0 t}{2^{3/2}}\right) \right]$ with  $k_0 r_0 = (2.5a_0 / \pi a_s)^{1/2}$ ; growth rate :  $\Gamma = \omega_0 / 2^{3/2}$ 

**THRESHOLD**: assuming  $\omega_0 t \approx 0.1\pi$  we find that the avalanche will start at  $a_0/a_s \approx 0.105$  which corresponds to  $I^* \approx 4 \times 10^{27}$  W/cm<sup>2</sup>

#### The pairs are created in a small 4-volume near $\mathfrak{F}_{TM}$ maximum

with the characteristic size

 $\pi r_0^2 z_0 ct_0 = \frac{5^{3/2} \lambda_0^4}{16\pi^5} \left(\frac{a_0}{a_s}\right)^2$   $a_s = \frac{m_e c^2}{\hbar \omega_0} = 5.1 \times 10^5 \qquad \mathfrak{F}_{\text{TM}} / a^2$ Here normalized Schwinger field is

Integrating over the 4-volume the probability of the pair creation we obtain the number of pairs produced per wave period,

$$N_{e^+e^-} = \iint W_{e^+e^-} dV dt = \frac{5^{3/2}}{4\pi^3} a_0^4 \exp\left(-\pi \frac{a_s}{a_0}\right)$$

0.5

0.0

5

10

10

The first pairs can be observed for an one-micron wavelength laser intensity of the order of  $\approx 10^{27}$  W/cm<sup>2</sup>, which corresponds to  $a_0 / a_s = 0.05$ , i.e. a characteristic size,  $r_0$ , Is approximately equal to  $0.04 \lambda_0$ 

### Towards antimatter creation in vacuum by present day lasers (experiments to conduct in next several years)

S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, M. Kando, H. Kiriyama, J. K. Koga, K. Kondo, H. Kotaki, A. S. Pirozhkov, S. S. Bulanov, A. G. Zhidkov, P. Chen, D. Neely, Y. Kato, N. B. Narozhny, and G. Korn, "On the design of experiments for the study of extreme field limits in the interaction of laser with ulrarelativistic electron beam" Nucl. Instr. Meth. Phys. Res. A, 660, 31 (2011)

S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, M. Kando, H. Kiriyama, J. K. Koga, K. Kondo, H. Kotaki, A. S. Pirozhkov, S. S. Bulanov, A. G. Zhidkov, N. N. Rosanov, P. Chen, D. Neely, Y. Kato, N. B. Narozhny, and G. Korn, "Extreme field science" Plasma Physics and Controlled Fusion, 53, 124025 (2011).

## Multi-photon creation of $e^-e^+\gamma$ plasma during ultrarelativistic electron beam collision with the EM pulse

$$\chi_{e} = \frac{E}{E_{s}} \left[ \frac{(m_{e}^{2}c^{2} + p_{0}^{2})^{1/2} + |p_{0}|}{m_{e}c} \right] = a \frac{\hbar\omega_{0}}{m_{e}c^{2}} \left[ \frac{(m_{e}^{2}c^{2} + p_{0}^{2})^{1/2} + |p_{0}|}{m_{e}c} \right]$$

The electron is not scattered aside by the PW, 30 fs laser ponderomotive force if

$$\gamma_e > c \tau_{las} a / 2 w_\perp \approx 500$$

For  $1 \mu m$  PW laser pulse focused to a few micron focus spot the amplitude is  $a = 10^2$ 

the parameter  $\chi_e$  becomes equal to unity for  $\gamma_0 = 2.5 \times 10^3$ 

i.e. for the electron energy of about of 1.3 GeV.

#### **Gamma-ray photon generation via** the nonlinear Thomson scattering

When a counter-propagating electron collides with the laser pulse its longitudinal momentum decreases:

$$p_{x} = -|p_{0}| + m_{e}c \frac{a^{2}m_{e}c}{2[(m_{e}^{2}c^{2} + p_{0}^{2})^{1/2} + |p_{0}|]}$$

In the boosted frame of reference where the electron is at the rest the laser frequency is related to the laser frequency in the laboratory frame as ross sostion of poplinger

$$\overline{\omega}_{0} = \frac{\omega_{0}}{\sqrt{1+a^{2}}} \sqrt{\frac{1-\beta_{0}}{1+\beta_{0}}}$$
The energy of emitted photon is  $\hbar \overline{\omega}_{\gamma} = 0.3 \hbar \overline{\omega}_{0} a^{3}$ 
The number of emitted photons during one wave period is  $N_{\gamma} \approx \frac{3\pi}{4} \alpha a$ 

The number of emitted photons during one wave period is

## What the values of $\chi_e$ and $\chi_{\gamma}$ for 1.25 GeV LWFA electrons colliding with the FM generated EM wave?

We assume 1 PW, *a*=150, 1.25 GeV (LWFA ) electron energy,  $\gamma_{ph}=5$  (E= $2\gamma_{ph}E_0$ ,  $\omega=4\gamma_{ph}^2\omega_0$ ):

$$\chi_{e} = \frac{E}{E_{s}} \left[ \frac{(m_{e}^{2}c^{2} + p_{0}^{2})^{1/2} + |p_{0}|}{m_{e}c} \right] \approx 2\gamma_{e}\gamma_{ph} \frac{E}{E_{s}} = 10 \times \frac{2 \times 150 \times 2500}{5.1 \times 10^{5}} \approx 15$$

& (in multi-photon inverse Compton scattering regime)



#### **Laser Wake Field Accelerator**



#### **Laser Wake Field Accelerator in Extreme Field Limit**



#### **EM Pulse Intensification and Shortening by Flying Mirror**



paraboloidal relativistic mirrors formed by the wake wave left behind the laser driver pulse

 M. Kando, et al.,
 Phys. Rev. Lett. 99, 135001 (2007)

 A. S. Pirozhkov, et al.,
 Phys. Plasmas 14, 080904 (2007)

 M. Kando, et al.,
 Phys. Rev. Lett., 103, 235003 (2009)

(femtosecond pulse)

#### These estimations are too optimistic....

# What is the role of the radiation damping?

#### **Radiation friction effects**

$$m_e c^2 \frac{du^{\mu}}{ds} = e F^{\mu\nu} u_{\nu} + \frac{2e^2}{3c} g^{\mu}$$

The radiation friction force in the Landau-Lifshitz form is given by

$$g^{\mu} = \frac{2e^2}{3m_e c^3} \left[ \frac{\partial F^{\mu\nu}}{\partial x^{\lambda}} u_{\nu} u_{\lambda} - \frac{e^2}{m_e c^2} \left( F^{\mu\lambda} F_{\nu\lambda} u^{\nu} + \left( F_{\nu\lambda} u^{\lambda} \right) \left( F^{\nu\kappa} u_{\kappa} \right) u^{\mu} \right) \right]$$

Retaining the main order terms, we obtain equation for the *x*-component of the electron momentum

$$\frac{dp_x}{dt} = -4\varepsilon_{rad}\omega_0 a^2(2t)\frac{p_x^2}{m_e c}, \qquad \varepsilon_{rad} = \frac{2r_e}{3\lambda}$$

Its solution is  

$$p_x(t) = \frac{p_x(0)m_ec}{m_ec + 4\varepsilon_{rad}\omega_0 p_x(0)\int_0^t a^2(2t')dt'}, \quad p_x(t) \xrightarrow[t \to \infty]{} \frac{m_ec}{4\varepsilon_{rad}\omega_0 \tau_{las}a_0^2}$$

L. D. Landau, and E. M. Lifshitz, The Classical Theory of Fields, Pergamon, 1975

I. Pomeranchuk,

"Maximum Energy that Primary Cosmic-ray Electrons Can Acquire on the Surface of the Earth as a Result of Radiation in the Earth's Magnetic Field", J. Phys. USSR, 2, 65 – 69, 1940

E

Ø

### Numerical solution of equations of the electron motion in the laser field with the radiation friction taken into account



Time dependence of the electron and photon parameters for a 1.25 GeV electron beam interaction with a PW (a=150, 9 fs) laser pulse. a) Gaussian pulse; b) Super-Gaussian (m=4) pulse. The electron energy before and after the interaction with the laser pulse equals 1.25 GeV and 0.25 GeV, respectively. The parameter  $\chi_e$ reaches the maximum value 0.5 and  $\chi_{\gamma}$  is equal to 0.3.

#### **Parameters of Experiment**

|                                                            | e (150 MeV)<br>+PW Laser | LWFA e (1.25 GeV)<br>+PW Laser | LWFA e (1.25 GeV)<br>+FM pulse |
|------------------------------------------------------------|--------------------------|--------------------------------|--------------------------------|
| γ <sub>e</sub>                                             | 300                      | 2500                           | 2500                           |
| $a_0$                                                      | 100                      | 100                            | 10                             |
| χe                                                         | 0.05                     | 0.5                            | 2.5                            |
| $a_{\rm rad} = (\epsilon_{\rm rad}/\gamma_{\rm e})^{-1/3}$ | 60                       | 30                             | 6                              |

#### **Extreme Field Limits**

#### in high intensity laser interaction with matter and vacuum



Development of the Extreme Field Science will allow for exploring novel physics, for studying the processes of high importance for fundamental physics, for laboratory modeling of processes of key importance for relativistic astrophysics.

The experiments in this field will allow modelling in a terrestrial laboratory the state of matter in cosmic Gamma Ray Bursts and other objects.

It will open at first stage a way for developing new type of hard EM radiation sources: multi- MeV, several fs, gamma-ray burst.

## Thank you for listening to me!