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Reaction-Advection-Diffusion Equation for Density ρ

Let ρ (x , t) represent the density of particles at point x and time t.
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Reaction-Advection-Diffusion Equation for Density ρ

Let ρ (x , t) represent the density of particles at point x and time t.

• Advection-diffusion PDE:

∂ρ

∂t
+ v (x , t) · ∇ρ = D∆ρ+ r (ρ) ρ, x ∈ R

3

where r (ρ) is the reaction rate.

• Fractional PDE with anomalous transport (Levy flights, subdiffusion,
etc.):

τγD
γ
t ρ = −Dα (−∆)

α

2 ρ+ r(ρ)ρ, x ∈ R
3

where D
γ
t ρ is the Caputo derivative and the Laplacian ∆ is replaced by a

Riesz fractional operator: − (−∆)
α

2 .
Is it a good model for reaction-transport?
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Anomalous transport: subdiffusion

Spatial dispersal of Brownian particles:

EB2(t) = 2Dt
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Anomalous transport: subdiffusion

Spatial dispersal of Brownian particles:

EB2(t) = 2Dt

Subdiffusion:
EX 2(t) ∼ tγ 0 < γ < 1

Biology contains a wealth of subdiffusive phenomena, for example, proteins
diffuse across cell membranes.
Subdiffusion in hydrology: the travel times of contaminants in
groundwater are much longer than is expected from the classic diffusion.

What is the macroscopic equation for the concentration ρ?
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Subdiffusion in dendritic spines

Spiny Dendrites:

Dendritic spines are essential elements of most brain regions because they
form a surface for receiving synaptic inputs. Transport of biologically inert
particles (fluorescein dextran) in spiny dendrites is subdiffusive (Neuron
52, 635 (2006)):

EX 2(t) ∼ tγ 0 < γ < 1

Non-Markovian model: Fedotov, Mendez, Phys.Rev.Lett. 101, 218102
(2008); Phys. Rev. E 82, 041103 (2010)
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Subdiffusion of proteins on cell membrane

A variety of proteins are scattered throughout the flexible matrix of
phospholipid molecules, somewhat like icebergs floating in the ocean.

Basic reasons for anomalous diffusion:

1) obstruction by mobile and immobile proteins;
2) transient binding to immobile or mobile species (lipid-protein and
protein-protein interactions);
3) confinement by membrane skeletal corrals;
4) interaction of proteins with lipid microdomains (lipid rafts).
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Probabilistic solution of advection-diffusion PDE

Probabilistic solution of the initial-value problem (macroscopic)

∂ρ

∂t
+ v (x , t) · ∇ρ = D∆ρ, ρ(x , 0) = ρ0(x) x ∈ R

3

is given by the formula

ρ (x , t) = Exρ0 (X (t)) ,
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Probabilistic solution of advection-diffusion PDE

Probabilistic solution of the initial-value problem (macroscopic)

∂ρ

∂t
+ v (x , t) · ∇ρ = D∆ρ, ρ(x , 0) = ρ0(x) x ∈ R

3

is given by the formula

ρ (x , t) = Exρ0 (X (t)) ,

where X (t) is a solution of the (microscopic) SDE:

dX (s) = −v (X (s), t − s) ds + (2D)1/2dW (s), 0 < s < t

W(s) is the standard three-dimensional Wiener process (M. Freidlin)
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Continuous time random walk (CTRW)

Let X (t) denote the position of a particle:

X (t) =

N(t)
∑

i=1

Zi , (1)

where N(t) is a renewal or counting process. X (t) is called a continuous
time random walk (CTRW).
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Continuous time random walk (CTRW)

Let X (t) denote the position of a particle:

X (t) =

N(t)
∑

i=1

Zi , (1)

where N(t) is a renewal or counting process. X (t) is called a continuous
time random walk (CTRW).

Generalized Master equation for the mean-field density ρ(x , t):

∂ρ(x , t)

∂t
=

∫

t

0
K (t − s)

[
∫

ρ(x − z , s)w(z)dz − ρ(x , s)

]

ds (2)

R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
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Parabolic scaling vs anomalous scaling

Generalized Master equation for the mean-field density ρ(x , t):

∂ρ(x , t)

∂t
=
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0
K (t − s)
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ρ(x − z , s)w(z)dz − ρ(x , s)

]

ds (3)
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Parabolic scaling vs anomalous scaling

Generalized Master equation for the mean-field density ρ(x , t):

∂ρ(x , t)

∂t
=

∫

t

0
K (t − s)

[
∫

ρ(x − z , s)w(z)dz − ρ(x , s)

]

ds (3)

Assume that the pdf φ (t) of the waiting time has a finite first moment
and the dispersal kernel w (z) has a finite variance.

If we apply the parabolic scaling (long-time large-scale limit)
x → x

ε , t → t

ε2
then the density

ρ(x , t) = lim
ε→0

ρε (x , t) = lim
ε→0

ρ
(x

ε
,
t

ε2

)

obeys the macroscopic diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
.
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Anomalous diffusion

Assume that the pdf of the waiting time φ (τ) decreases like τ−γ−1 as
τ → ∞ (infinite mean waiting time) and the dispersal kernel w (z) has
heavy tails |z |−1−α (infinite variance).

ρ(x , t) = lim
ε→0

ρε (x , t) = lim
ε→0

ρ

(

x

ε
,
t

ε
α

γ

)
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Anomalous diffusion

Assume that the pdf of the waiting time φ (τ) decreases like τ−γ−1 as
τ → ∞ (infinite mean waiting time) and the dispersal kernel w (z) has
heavy tails |z |−1−α (infinite variance).

ρ(x , t) = lim
ε→0

ρε (x , t) = lim
ε→0

ρ

(

x

ε
,
t

ε
α

γ

)

obeys the macroscopic space-time fractional diffusion equation

∂γρ

∂tγ
= Dα,γ

∂αρ

∂|x |α
, 0 < α < 2

where
∂γρ

∂tγ
:=

1

Γ (1− γ)

∫

t

0

ρ′s (x , s) ds

(t − s)γ
, 0 < γ < 1

is the Caputo fractional derivative,

∂αρ

∂|x |α
:= Γ(1 + α)

sin (πα/2)

π

∫

∞

0

ρ (x − z , t)− 2ρ(x , t) + ρ(x + z , t)

z1+α
dz

is the symmetric Riesz fractional derivative.
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Fractional Fokker-Planck (FFP) equation

Let p(x , t) be the PDF for finding the particle in the interval (x , x + dx)
at time t, then

∂p

∂t
= D1−µ

t LFPp (4)

with LFPp = −∂ (vµ(x)p) ∂x + ∂2 (Dµ(x)p) /∂x
2.

The Riemann-Liouville derivative D1−µ
t is defined as

D1−µ
t p (x , t) =

1

Γ(µ)

∂

∂t

∫

t

0

p (x , u) du

(t − u)1−µ
(5)

Sergei Fedotov (University of Manchester) P.N.Lebedev Physical Institute May 28 - June 2, 2012 11 / 22



Fractional Fokker-Planck (FFP) equation

Let p(x , t) be the PDF for finding the particle in the interval (x , x + dx)
at time t, then

∂p

∂t
= D1−µ

t LFPp (4)

with LFPp = −∂ (vµ(x)p) ∂x + ∂2 (Dµ(x)p) /∂x
2.

The Riemann-Liouville derivative D1−µ
t is defined as

D1−µ
t p (x , t) =

1

Γ(µ)

∂

∂t

∫

t

0

p (x , u) du

(t − u)1−µ
(5)

The difference between standard Fokker-Planck equation and FFP
equation is the rate of relaxation of p (x , t) → pst(x). In the anomalous
subdiffusive case the relaxation process is very slow and it is described by a
Mittag-Leffler function Eµ (−λnt

µ) with the power-law decay t−µ as
t → ∞ (R. Metzler and J. Klafter, 2000) .
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Fractional Fokker-Planck (FFP) equation

Our main result is that the subdiffusive fractional equations with constant
µ in a bounded domain [0, L] are not structurally stable with respect to
the non-homogeneous variations of parameter µ.

µ(x) = µ+ δν(x) (6)

0 Lx

µ
µ(x)

δν(x)

The space variations of the anomalous exponent lead to a drastic change
in asymptotic behavior of p(x , t) for large t.
S. Fedotov and S. Falconer, Phys. Rev. E, 85, 031132, 2012
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Subdiffusive Fokker-Planck equation

FFP equation with varying anomalous exponent

∂p

∂t
= −

∂
(

vµ(x)D
1−µ(x)
t p

)

∂x
+

∂2
(

Dµ(x)D
1−µ(x)
t p

)

∂x2
(7)

with the fractional diffusion coefficient Dµ(x) and fractional drift vµ(x).
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Subdiffusive Fokker-Planck equation

FFP equation with varying anomalous exponent

∂p

∂t
= −

∂
(

vµ(x)D
1−µ(x)
t p

)

∂x
+

∂2
(

Dµ(x)D
1−µ(x)
t p

)

∂x2
(7)

with the fractional diffusion coefficient Dµ(x) and fractional drift vµ(x).

We put the reflecting barriers at x = 0 and x = L and consider constant
exponent µ and diffusion Dµ. Then the FFP equation (7) admits the
stationary solution in the form of the Gibbs-Boltzmann distribution

pst(x) = C exp [−U(x)], U(x) =
1

Dµ

∫

x

vµ(z)dz (8)

When the anomalous exponent µ depends on the space variable x , the
Gibbs-Boltzmann distribution is not a long time limit of the fractional
Fokker-Planck equation.
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Monte Carlo simulations

20 40 60 80 i
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N=104

p
i
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Figure: Long time limit of the solution to the system with µi = 0.5 for all i .
Gibbs-Boltzmann distribution is represented by the line.
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Figure: The parameters are µi = 0.5 for all i except i = 42 for which µ42 = 0.3.
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Fractional PDE’s with reactions.

The main challenge is to implement the non-linear kinetic term into
non-Markovian transport equations involving CTRW.

We assume that the chemical reaction follows the mass action law and
reaction term is of the form r (ρ) ρ. It is also convenient to represent the
non-linear reaction rate r (ρ) as the difference between the birth rate
r+ (ρ) and the death rate r− (ρ)

r (ρ) = r+ (ρ)− r− (ρ) . (9)

Now we consider two different models for reaction and transport process.
S. Fedotov, Phys. Rev. E 81, 011117 (2010)
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Model A: Nonlinear Master equation

One can obtain nonlinear Master equation for the density ρ (x , t) which is
non-local in space and time

∂ρ

∂t
=

∫

t

0
K (t − τ) (

∫

R

ρ (x − z , τ) e
∫
t

τ
r(ρ(x−z ,u))duw (z) dz

−ρ (x , τ) e
∫
t

τ
r(ρ(x ,u))du)dτ + r (ρ) ρ.

Transport and the reaction are not separable!
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Model A: Nonlinear Master equation

One can obtain nonlinear Master equation for the density ρ (x , t) which is
non-local in space and time

∂ρ

∂t
=

∫

t

0
K (t − τ) (

∫

R

ρ (x − z , τ) e
∫
t

τ
r(ρ(x−z ,u))duw (z) dz

−ρ (x , τ) e
∫
t

τ
r(ρ(x ,u))du)dτ + r (ρ) ρ.

Transport and the reaction are not separable!
Fractional reaction-transport equation:

∂ρ

∂t
= ∆e

∫
t

0
r(ρ(x ,u))duD

1−γ
t [ρe−

∫
t

0
r(ρ(x ,u))du] + r(ρ)ρ. (10)

In a linear case, this equation has been derived by Sokolov, et al, PRE,
2006 and Henry, et al, PRE, 2006
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Model B: Reaction-transport Master equation

We assume that the particles created with the rate r+ (ρ) ρ have zero age.
We interpret the density j (x , t) as a zero-age density of particles arriving
at the point x exactly at time t.
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Model B: Reaction-transport Master equation

We assume that the particles created with the rate r+ (ρ) ρ have zero age.
We interpret the density j (x , t) as a zero-age density of particles arriving
at the point x exactly at time t. Non-linear Master equation for the
density ρ (x , t):

∂ρ

∂t
=

∫

t

0
K (t − τ) (

∫

R

ρ (x − z , τ) e−
∫
t

τ
r−(ρ(x−z ,u))duw (z) dz

−ρ (x , τ) e−
∫
t

τ
r−(ρ(x ,u))du)dτ + r+ (ρ) ρ− r− (ρ) ρ.
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Model B: Reaction-transport Master equation

We assume that the particles created with the rate r+ (ρ) ρ have zero age.
We interpret the density j (x , t) as a zero-age density of particles arriving
at the point x exactly at time t. Non-linear Master equation for the
density ρ (x , t):

∂ρ

∂t
=

∫

t

0
K (t − τ) (

∫

R

ρ (x − z , τ) e−
∫
t

τ
r−(ρ(x−z ,u))duw (z) dz

−ρ (x , τ) e−
∫
t

τ
r−(ρ(x ,u))du)dτ + r+ (ρ) ρ− r− (ρ) ρ.

If we expand the expression in the brackets for small z , we obtain

∂ρ

∂t
=

σ2

2

∂2

∂x2

∫

t

0
K (t − τ) ρ (x , τ) e−

∫
t

τ
r−(ρ(x ,u))dudτ

+r+ (ρ) ρ− r− (ρ) ρ. (11)

Model B describes the situation when newborn particles have been given
new waiting time (Vlad, Ross (2002); Yadav, Horsthemke (2006).
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Anomalous Transport and Nonlinear Reactions in

Two-State Systems

Two-state Markovian random process: we assume that the transition
probabilities γ1 and γ2 are constants.
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Anomalous Transport and Nonlinear Reactions in

Two-State Systems

Two-state Markovian random process: we assume that the transition
probabilities γ1 and γ2 are constants.

Master equations for the mean density of particles in state 1 (mobile),
ρ1(x , t), and the density of particles in state 2 (immobile), ρ2(x , t), are

∂ρ1
∂t

= Lxρ1 − γ1ρ1 + γ2ρ2, (12)

∂ρ2
∂t

= r2 (ρ2) ρ2 − γ2ρ2 + γ1ρ1, (13)

where the reaction rate r2 (ρ2) depends on the local density of particles ρ2.
Here Lx is the transport operator acting on x-coordinate.
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Non-Markovian model for the transport and reactions of

particles in two-state systems

Nonlinear Master equations:

∂ρ1
∂t

= Lxρ1 + j1(x , t)− j2(x , t), (14)

∂ρ2
∂t

= r2 (ρ2) ρ2 + j2(x , t)− j1(x , t), (15)

where the densities j1(x , t) and j2(x , t) describe the exchange flux of
particles:
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Non-Markovian model for the transport and reactions of

particles in two-state systems

Nonlinear Master equations:

∂ρ1
∂t

= Lxρ1 + j1(x , t)− j2(x , t), (14)

∂ρ2
∂t

= r2 (ρ2) ρ2 + j2(x , t)− j1(x , t), (15)

where the densities j1(x , t) and j2(x , t) describe the exchange flux of
particles:

j1(x , t) =

∫

t

0
K2(t − t ′)ρ2(x , t

′)e
∫
t

t′
r2(ρ2(x ,s))dsdt ′, (16)

j2(x , t) =

∫

t

0

∫

R

K1(t − t ′)p(x − z , t − t ′)ρ1(z , t
′)dzdt ′, (17)

where Ki (t) is the memory kernel defined as K̃i (s) =
ψ̃i (s)

Ψ̃i (s)
.
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Anomalous chemotaxis

The chemotaxis is a directed migration of cells toward a more favorable
environment

The flux of cells

J = χ
∂S

∂x
ρ−

σ2γ(S(x))

2

∂ρ

∂x
(18)

where S(x) is the chemotactic substance and χ is the chemotactic
sensitivity.
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Anomalous chemotaxis

The chemotaxis is a directed migration of cells toward a more favorable
environment

The flux of cells

J = χ
∂S

∂x
ρ−

σ2γ(S(x))

2

∂ρ

∂x
(18)

where S(x) is the chemotactic substance and χ is the chemotactic
sensitivity.

The anomalous cell flux (SF, Phys. Rev. E 83, 021110 (2011)):

J = −
σ2

2

∂S

∂x

∂µ

∂S

∂

∂µ
g−1
µ (x)D

1−µ(S(x))
t ρ

−
σ2

2
g−1
µ (x)D

1−µ(S(x))
t

∂ρ

∂x
. (19)

Here we introduced the anomalous chemotactic sensitivity ∂µ/∂S as a
derivative of the anomalous exponent µ.

D
1−µ(S(x))
t is the Riemann-Liouville fractional derivative.
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Anomalous chemotaxis

The anomalous flux leads to

ρ (x , t) → δ(x − xM) as t → ∞. (20)

Here xM is the point in space where the anomalous exponent µ (S(x)) has
a minimum. It means that all cells aggregate into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation.
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Here xM is the point in space where the anomalous exponent µ (S(x)) has
a minimum. It means that all cells aggregate into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation.

This behavior has been observed in experiments on phagotrophic protists
when ”cells become immobile in attractive patches, which will then
eventually trap all cells”.
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Anomalous chemotaxis

The anomalous flux leads to

ρ (x , t) → δ(x − xM) as t → ∞. (20)

Here xM is the point in space where the anomalous exponent µ (S(x)) has
a minimum. It means that all cells aggregate into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation.

This behavior has been observed in experiments on phagotrophic protists
when ”cells become immobile in attractive patches, which will then
eventually trap all cells”.

Another example of dense aggregation is MOSCOW
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Conclusions

• The mesoscopic description of non-Markovian reaction-transport systems
is still an open problem.
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Conclusions

• The mesoscopic description of non-Markovian reaction-transport systems
is still an open problem.

• A research associate position is available at the University of Manchester
for applied mathematician or theoretical physicist to work with Prof.
Sergei Fedotov on the project ”Anomalous reaction-transport equations:
applications to the theory of cancer spreading and subdiffusion in
dendrites”.

Salary : £29,249 to £35,938 p.a.
Duration: three years
Closing date: 14 June 2012
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