# Polarimetric Method of Determining Magnetic Fields in Accretion Discs around Black Holes

Gnedin Yu.N., Silant'ev N.A., Piotrovich M.Yu., Natsvlishvili T.M., Buliga S.D. Central Astronomical Observatory at Pulkovo, Saint-Petersburg

#### Abstract

We present the review of basic methods of measurements of magnetic fields with application to accreting supermassive black holes. The problem of the connection between jet and accretion disk is discussed. The results of polarimetric radio and optical observations of QSOs and AGNs are presented in this talk.

| <b>TD</b> 1 1 | -1 | 01             | 1 .       | 11   | 1  | 1        |           | •   | . •     | 1 •      |
|---------------|----|----------------|-----------|------|----|----------|-----------|-----|---------|----------|
| Table         |    | Characteristic | scales 11 | n ti | he | nuclear  | regions   | 1n  | active  | galaxies |
| 10.010        | _  | onaraction     | DOCTOD II |      |    | 11001001 | 1.0810110 | *** | 0.00110 | Sananoo  |

|                           | l                 | $l_8$               | $	heta_{ m Gpc}$    | $	au_c$      | $	au_{ m orb}$ |
|---------------------------|-------------------|---------------------|---------------------|--------------|----------------|
|                           | $[R_{g}]$         | [pc]                | [mas]               | [yr]         | [yr]           |
| Event horizon:            | 1 - 2             | $10^{-5}$           | $5 \times 10^{-6}$  | 0.0001       | 0.001          |
| Ergosphere:               | 1 - 2             | $10^{-5}$           | $5 \times 10^{-6}$  | 0.0001       | 0.001          |
| Corona:                   | $10^{1} - 10^{2}$ | $10^{-4} - 10^{-3}$ | $5 \times 10^{-4}$  | 0.001 - 0.01 | 0.2 - 0.5      |
| Accretion disk:           | $10^{1} - 10^{3}$ | $10^{-4} - 10^{-2}$ | 0.005               | 0.001 - 0.1  | 0.2 - 15       |
| Jet formation:            | $> 10^{2}$        | $> 10^{-3}$         | $>5 \times 10^{-4}$ | >0.01        | > 0.5          |
| Jet visible in the radio: | $> 10^{3}$        | $> 10^{-2}$         | > 0.005             | >0.1         | > 15           |
| Broad line region:        | $10^2 - 10^5$     | $10^{-3} - 1$       | 0.05                | 0.01 - 10    | 0.5 - 15000    |
| Molecular torus:          | $> 10^{5}$        | >1                  | > 0.5               | >10          | >15000         |
| Narrow line region:       | $> 10^{6}$        | >10                 | >5                  | >100         | > 500000       |

Column designation: l – dimensionless scale in units of the gravitational radius,  $GM/c^2$ ;  $l_8$  – corresponding linear scale, for a black hole with a mass of  $5 \times 10^8 M_{\odot}$ ;  $\theta_{\rm Gpc}$  – corresponding largest angular scale at 1 Gpc distance;  $\tau_c$  – rest frame light crossing time;  $\tau_{\rm orb}$  – rest frame orbital period, for a circular Keplerian orbit. Adapted from (Lobanov & Zensus 2006)













100

# **Three basic regions of Magnetic Fields:**

# (a) Accretion Disk(b) Relativistic Jet

(c) Accretion Disk Wind and Outflow

$$P_{l}\left(\vec{B},\vec{n}\right) = \frac{P_{l}\left(0,\mu\right)}{\sqrt{1+\delta^{2}\cos^{2}\theta}}; \text{ tan } 2\chi = \delta\cos\theta$$
$$\delta = 0.8\lambda_{rest}^{2}\left(\mu m\right)B \text{ - depolarization parameter}$$
For an accretion disk:  $\delta = \delta_{\perp}\sqrt{1-\mu^{2}} + \delta_{\parallel}\mu; \ \mu = \cos i$ 
$$\delta_{\perp} = 0.8\lambda_{rest}^{2}\left(\mu m\right)B_{\perp}, \ \delta_{\parallel} = 0.8\lambda_{rest}^{2}\left(\mu m\right)B_{\parallel}$$
$$B_{\perp}\left(R\right) = B_{H}\left(\frac{R_{H}}{R}\right)^{n}, \ n = \frac{5}{4} \text{ - Pariev et al., 2003.}$$
$$B_{\parallel} = B_{j} = B_{\perp}\left(\frac{L_{j}}{L_{d}}\frac{H}{R}\right)^{1/2} \approx B_{\perp}\frac{L_{j}}{L_{d}}$$

### **Magnetic Equipartition** R.-Y. Ma, F. Yuan, arXiv:0706.0124.

$$B_{H} = k \sqrt{2 L_{bol} / \varepsilon c} / R_{H}, \ k \approx 1$$

$$L_{bol} = \varepsilon \dot{M}c^2, \ R_H = \frac{GM}{c^2} \left( 1 + \sqrt{1 - \left(\frac{a}{M}\right)^2} \right)$$

| a/M   | $\epsilon_M$ | Spin Equilibrium? | Characterization                     |
|-------|--------------|-------------------|--------------------------------------|
| 0.0   | 0.057        | no                | standard thin disk; nonspinning BH   |
| 0.95  | 0.19         | yes               | turbulent MHD disk                   |
| 0.998 | 0.32         | yes               | standard thin disk; photon recapture |
| 1.0   | 0.42         | yes               | standard thin disk; max spin BH      |

$$B_{Ed} = 6.2 \times 10^8 \left(\frac{M_{\odot}}{M_{BH}}\right)^{1/2} \left(\frac{\eta}{\varepsilon}\right)^{1/2} \frac{1}{1 + \sqrt{1 - \left(\frac{a}{M}\right)^2}}, \quad \eta = \frac{L_{bol}}{L_{Ed}}$$

## **Magnetic Field of QSOs in the Epoch of Reionization**

| QSO        | Z     | $L_{bol}/L_{Ed}$ | a/M = 0,              | a/M = 0.95,                   | a/M = 0.998,           | a/M = 1.0,            |
|------------|-------|------------------|-----------------------|-------------------------------|------------------------|-----------------------|
|            |       |                  | $\epsilon = 0.05 /$   | 8 = 0.19                      | $\varepsilon = 0.52$   | $\varepsilon = 0.42$  |
| J0836+0054 | 5.810 | 0.44             | 9.0x10 <sup>3</sup> G | $7.5 \times 10^3  \mathrm{G}$ | 7.15x10 <sup>3</sup> G | 6.6x10 <sup>3</sup> G |
| J1030+0524 | 6.309 | 0.50             | 1.5x10 <sup>4</sup> G | 1.22x10 <sup>4</sup> G        | 1.16x10 <sup>4</sup> G | 1.0x10 <sup>4</sup> G |
| J1044-0125 | 5.778 | 0.31             | 7.1x10 <sup>3</sup> G | 6.0x10 <sup>3</sup> G         | 5.7x10 <sup>3</sup> G  | 5.3x10 <sup>3</sup> G |
| J1306+0356 | 6.016 | 0.61             | 1.8x10 <sup>4</sup> G | 1.5x10 <sup>4</sup> G         | 1.43x10 <sup>4</sup> G | 1.4x10 <sup>4</sup> G |
| J1411+1217 | 5.927 | 0.94             | 3.5x10 <sup>4</sup> G | 2.93x10 <sup>4</sup> G        | 2.8x10 <sup>4</sup> G  | 2.7x10 <sup>4</sup> G |
| J1623+312  | 6.247 | 1.11             | 3.5x10 <sup>4</sup> G | 2.93x10 <sup>4</sup> G        | 2.8x10 <sup>4</sup> G  | 2.7x10 <sup>4</sup> G |

## The Magnetic Flux Conservation in Accretion Disk:

$$a \sim \frac{1}{\lambda^{2/3}}, b \sim \lambda^{2/3}, B_z \sim R_\lambda^{-2}, B_\perp \sim R_\lambda^{-1}$$

$$\lambda_{res} \rightarrow a = b, \lambda_{res} = f\left(M_{BH}, L_{bol}/L_{Edd}, a_{*}\right)$$

 $a_* = 0$  - Schwarzschild BH,  $a_* = 1$  - Kerr BH.

$$P_{rel} = \frac{P_l(B,\mu)}{P_l(0,\mu)}$$

$$a = b = 4, P_{rel} = 0.3522, \chi = 20^{\circ}.7$$

$$a = 8, b = 2, P_{rel} = 0.1279, \chi = 41^{\circ}.2$$

$$a = 2, b = 8, P_{rel} = 0.1279, \chi = 0^{\circ}.9$$

**Estimation of Magnetic Field Strength at the Event Horizon** of SMBH by Optical Polarization in Continuum. **NGC 4258**:  $i = 83^{\circ} \pm 4^{\circ}$  $P_l(\lambda\lambda 4000 - 4800 \dot{A}) = (0.38 \pm 0.03)\%, \chi = 12^\circ \pm 2^\circ$  $P_l(\lambda\lambda 5100 - 6100 \dot{A}) = (0.35 \pm 0.01)\%, \chi = 7^{\circ} \pm 1^{\circ}$  $P_l(\lambda\lambda7500 - 8000\dot{A}) = (0.29 \pm 0.02)\%, \chi = 8^\circ \pm 2^\circ$ The classical result (Chandrasekhar-Sobolev Theory):  $P_i = 6.9\% \ (\mu = \cos i = 0.122)$  $R_{\lambda} = 0.95 \times 10^{10} \left(\frac{\lambda_{rest}}{\mu m}\right)^{4/3} \left(\frac{M_{BH}}{M}\right)^{2/3} \left(\frac{L_{bol}}{\epsilon L_{rest}}\right)^{1/3}$ (Poindexter et al., 2007) The faraday Depolarization Factor:  $\delta = 0.8\lambda_{rest}^2 B(R_{\lambda})$  $B_{H} = B(R_{\lambda}) \left(\frac{R_{\lambda}}{R_{M}}\right)^{n}$ ,  $n = \frac{5}{4}$  - the standard Shakura-Sunyaev Disk  $B_{\mu} = 2.5 \times 10^4 G$ 

## NGC 4258

Zeeman Spectropolarimetry 18cm OH Megamaser Emission (Modjaz et al., 2005)  $1\sigma$  upper limit: 30mG at 0.14pc.

$$B_{H} = 2.5 \times 10^{4} G$$
,  $n = \frac{5}{4}$ 

 $B_{mas}(0.14\,pc) = 20mG$  for  $\frac{a}{M_{BH}} \approx 1$ 

NGC 3516 (Smith et al., 2002)  $M_{BH} = 10^{7.36} M_{\odot}, L_{bol} = 10^{44.9} erg/s, i = 38^{\circ}.3$   $P_l (\lambda \lambda 6500 - 6740 \text{\AA}) = (0.15 \pm 0.04)\%, \chi = 30^{\circ}.1 \pm 8^{\circ}$   $P_l (theory) = 0.83\%; B_H = 10^4 G (\varepsilon = 0.32, a_* = 0.998)$  $a_* = a/M_{BH}$  - Kerr parameter.

### NGC 4151

 $M_{BH} = (1.53^{+1.06}_{-0.89}) M_{\odot}, L_{bol} = 10^{43.73} erg/s, i = 60^{\circ}$  $P_l (\lambda \lambda 3800 - 5300 \dot{A}) = 0.26\%, P_l (theory) = 2.257\%$ (Chandrasekhar, 1950)  $B_H = 1.5 \times 10^4 G, \varepsilon = 0.32$ 

#### NGC 5548

 $M_{BH} = 10^{8.05} M_{\odot} , L_{bol} = 10^{44.83} \, erg/s , i = 45^{\circ}$ The classical Thomson limit:  $P_l = 1.115\%$  $P_l (\lambda \lambda 6520 - 6860 \dot{A}) = (0.69 \pm 0.01)\% , B_H = 720G , \varepsilon = 0.32$ 

| Model                                          | B <sub>eq</sub> (R)      | $P_{l}(\lambda)$      | Refs.                  |
|------------------------------------------------|--------------------------|-----------------------|------------------------|
| Accretion disk with ion supported flows.       | $\sim \mathrm{R}^{-5/4}$ | $\sim \lambda^{-1/3}$ | Begelman, 1988         |
| Sunayev-Shakura disk Region (a), $P_r \gg P_g$ | $\sim \mathrm{R}^{-3/4}$ | $\sim \lambda^{-1}$   | Shakura-Sunayev, 1973  |
| Shakura-Sunayev disk (b) $P_g >> P_r$          | $\sim \mathrm{R}^{-9/8}$ | $\sim \lambda^{-1/2}$ | Shakura-Sunayev, 1973  |
| Shakura-Sunayev disk (c) $P_g >> P_r$          | $\sim R^{-21/16}$        | $\sim \lambda^{-1/4}$ | Shakura-Sunayev, 1973  |
| Hot Accretion Disk with Plasma Viscosity       | $\sim R^{-15/28}$        | $\sim \lambda^{-9/7}$ | Kafatos, 1988          |
| Payne-Eardley Disk $P = P_g$ , $\alpha = 1$    | $\sim R^{-21/8}$         | $\sim \lambda^{-1/8}$ | Shapiro-Teukolsky      |
| Magnetic Accretion-Jet Ejection Disk           | <b>D</b> -5/2            | γ 4/3                 | Case and Vennens 2002  |
| without equipartition                          | ~ K                      | $\sim \lambda$        | Case and Keppens, 2002 |
| Accretion disk with non-zero torque on its     | <b>D</b> -15/16          | 2-1                   | Agal Kralik 2000       |
| inner edge                                     | ~ K                      | ~ ~                   | Agui, Kiulik, 2000     |
| Disk with reprocessing                         | $\sim \mathrm{R}^{-7/4}$ | $\sim \lambda^{-1/8}$ |                        |

Магнитный диск:  $B^2/8\pi = \alpha \sqrt{P_{gas}P_{rod}}$ ,  $P_l \sim \lambda^{-15/16}$ .



**Figure 7.** Ratio of horizon-threading magnetic field as measured by ZAMO observers and magnetic field strength in the accretion disk as a function of spin.

(D. Garofalo, The Astrophysical Journal, 699:400–408, 2009 July 1)

| Object     | Ζ     | $p_{\text{lin}}$ (%) | $\theta_{\text{lin}}$ (°) | $p_{ m circ}$ (%) |
|------------|-------|----------------------|---------------------------|-------------------|
| 1120+019   | 1.465 | $1.95 \pm 0.27$      | $9 \pm 4^{c}$             | $-0.02 \pm 0.05$  |
| 1124-186   | 1.048 | $11.68 \pm 0.36$     | $37 \pm 1^{g}$            | $-0.04 \pm 0.08$  |
| 1127-145   | 1.187 | $1.30 \pm 0.40$ [w]  | $23 \pm 10^{a}$           | $-0.05 \pm 0.05$  |
| 1157 + 014 | 1.990 | $0.76 \pm 0.18$      | 39 ± 7 <sup>f</sup>       | $-0.10 \pm 0.08$  |
| 1205+146   | 1.640 | $0.83 \pm 0.18$      | $161 \pm 6^{f}$           | $-0.10 \pm 0.09$  |
| 1212+147   | 1.621 | $1.45 \pm 0.30$      | $24 \pm 6^{c}$            | $0.15 \pm 0.09$   |
| 1215-002*  | 0.420 | $23.94 \pm 0.70$     | $91 \pm 1^{g}$            | $-0.42 \pm 0.40$  |
| 1216-010   | 0.415 | $11.20 \pm 0.17$     | $100 \pm 1^{g}$           | $-0.01 \pm 0.07$  |
| 1222+228   | 2.058 | $0.92 \pm 0.14$      | $169 \pm 4^{g}$           | $0.01 \pm 0.10$   |
| 1244-255   | 0.633 | $8.40 \pm 0.20$ [w]  | $110 \pm 1^{a}$           | $-0.23 \pm 0.20$  |
| 1246-057   | 2.236 | $1.96 \pm 0.18$ [w]  | 149 ± 3 <sup>e</sup>      | $0.01 \pm 0.03$   |
| 1254+047   | 1.024 | $1.22 \pm 0.15$ [w]  | $165 \pm 3^{b}$           | $-0.02 \pm 0.04$  |
| 1256-229*  | 0.481 | $22.32 \pm 0.15$     | $157 \pm 1^{g}$           | $0.18 \pm 0.04$   |
| 1309-056   | 2.212 | $0.78 \pm 0.28$      | $179 \pm 11^{c}$          | $-0.08 \pm 0.06$  |
| 1331-011   | 1.867 | $1.88 \pm 0.31$      | $29 \pm 5^{c}$            | $-0.04 \pm 0.06$  |
| 1339-180   | 2.210 | $0.83 \pm 0.15$      | $20 \pm 5^{g}$            | $-0.01 \pm 0.07$  |
| 1416-129   | 0.129 | $1.63 \pm 0.15$ [w]  | $44 \pm 3^{b}$            | $0.05 \pm 0.06$   |
| 1429-008   | 2.084 | $1.00 \pm 0.29$      | 9 ± 9°                    | $0.02 \pm 0.08$   |
| 2121+050   | 1.878 | 10.70 ± 2.90 [w]     | $68 \pm 6^{a}$            | $0.02 \pm 0.15$   |
| 2128-123   | 0.501 | $1.90 \pm 0.40$ [w]  | $64 \pm 6^{d}$            | $-0.04 \pm 0.03$  |
| 2155-152   | 0.672 | 22.60 ± 1.10 [w]     | $7 \pm 2^{a}$             | $-0.35 \pm 0.10$  |

Table 2. New circular polarization measurements of quasars

Notes: Linear and circular polarizations were measured in the V filter except a series of linear polarization data from the literature measured in white light and noted [w]; ( $\star$ ) 1215-002 is classified as a BL Lac by Collinge et al. 2005 Sbarufatti et al. 2005 re-determined the redshift of 1256-229 (z=0.481) and considered this object as a BL Lac. References for linear polarization: (a) Impey & Tapia 1990; (b) Berriman et al. 1990; (c) Hutsemékers et al. 1998; (d) Visvanathan & Wills 1998; (e) Schmidt & Hines 1999; (f) Lamy & Hutsemékers 2000; (g) Sluse et al. 2005.

D. Hutsemekers et al.

1

| Source       | z     | $\overline{Q}$<br>$10^{45}$ ergs/s | $\begin{array}{c} L_{bol} \\ 10^{45} \mathrm{ergs/s} \end{array}$ | $\overline{R}$ | $\substack{\text{freq}\\(10^{15}\text{ Hz})}$ | $L_{bol}/L_{Edd}$ | $\overline{Q}_{Edd}$ | ref |
|--------------|-------|------------------------------------|-------------------------------------------------------------------|----------------|-----------------------------------------------|-------------------|----------------------|-----|
| 3C 216       | 0.670 | 15.1/14.1                          | pprox 0.12                                                        | pprox 120      | 0.71/1.16                                     | 0.05 - 0.1        | 3.3 - 10             | 1   |
| 3C 455       | 0.543 | 7.13/5.04                          | 0.38                                                              | 18.7/13.3      | 0.94                                          | 1.42              | 26.7/18.9            | 2   |
|              |       | 7.13/5.04                          | 0.38                                                              | 18.7/13.3      | 0.94                                          | 0.07              | 1.33/0.94            | 3   |
| 3C 82        | 2.878 | 155.4/183.8                        | 14.5                                                              | 10.7/12.7      | 0.014                                         | 0.106             | 1.14/1.35            | 4   |
|              |       | 155.4/183.8                        | 25.0                                                              | 6.22/7.35      | 1.67                                          | 0.245             | 1.52/1.80            | 4   |
| 3C 9         | 2.009 | 148.3/174                          | 25.0                                                              | 5.93/6.96      | 1.67                                          | 0.264             | 1.57/1.85            | 5   |
|              |       | 148.3/174                          | 38.8                                                              | 3.82/4.49      | 0.0078                                        | 0.324             | 1.24/1.46            | 6   |
| $4C \ 25.21$ | 2.686 | 59.3/59.7                          | 11.6                                                              | 5.11/5.15      | 1.14                                          | 0.198             | 1.02/1.02            | 5   |
| PKS 1018-42  | 1.28  | 63.9/65.2                          | 19.3                                                              | 3.31/3.38      | 1.37                                          | 0.428             | 1.42/1.45            | 7   |
|              |       | 63.9/65.2                          | 14.7                                                              | 4.35/4.45      | 1.37                                          | 0.326             | 1.42/1.45            | 7   |
| 4C 04.81     | 2.594 | 103.8/148                          | 35.8                                                              | 2.90/4.13      | 2.30                                          | 0.459             | 1.33/1.90            | 5   |
| 3C 196       | 0.871 | 73.5/87.0                          | 31.6                                                              | 2.33/2.76      | 1.53                                          | 3.04              | 7.10/8.41            | 8   |
|              |       | 73.5/87.0                          | 31.6                                                              | 2.33/2.76      | 1.53                                          | 0.238             | 0.66/0.56            | 9   |
| 3C 14        | 1.469 | 52.38/51.68                        | 32.6                                                              | 1.61/1.59      | 1.00                                          | 0.604             | 1.05/1.03            | 10  |
| 3C 270.1     | 1.519 | 65.1/66.6                          | 48.2                                                              | 1.35/1.38      | 2.07                                          | 0.844             | 1.14/1.17            | 5   |

Table 1. FR II Quasars with Super Eddington Jets

see Punsly (2007), 2. continuum and FWHM from Gelderman and Whittle (1994), M<sub>bh</sub> from eqn (5), 3. M<sub>bh</sub> from bulge luminosity estimate in eqn (8), 4. L<sub>bol</sub> and FWHM raw data from Semenov et al. (2004), M<sub>bh</sub> from eqn (6), 5. L<sub>bol</sub> and FWHM from Barthel et al. (1990), M<sub>bh</sub> from eqn (6), 6. continuum from Meisenheimer et al. (2001), FWHM from Barthel et al. (1990), M<sub>bh</sub> from eqn (6), 7.
 Punsly and Tingay (2006), M<sub>bh</sub> from eqn(7), 8. continuum and FWHM from Lawrence et al. (1996), M<sub>bh</sub> from eqn (5), 9. continuum and FWHM from Lawrence et al. (1996), M<sub>bh</sub> from eqn (7), 10. continuum and FWHM from Aars et al. (2005), M<sub>bh</sub> from eqn (7)

(Brian Punsly, arXiv:0610042v1)

| Cluster      | Distance | $n_{ m H}$         | $T_{gas}$ | $F_{\rm R, 5GHz}$ | $M_{\rm BH,rad}$ | $M_{\rm BH,dyn}$ |
|--------------|----------|--------------------|-----------|-------------------|------------------|------------------|
| name         | (kpc)    | $({\rm Hcm^{-3}})$ | (Kelvin)  | $(\mu Jy)$        | $(M_{\odot})$    | $(M_{\odot})$    |
| $\omega$ Cen | 5.3      | 0.044              | $10^{4}$  | 20                | 5200/1100        | 12000            |
| 47 Tuc       | 4.5      | 0.28/0.07          | $10^{4}$  | 40                | 4900/520         | 1500             |
| NGC 6388     | 10.0     | 0.1                | $10^{4}$  | 81                | 1500/735         | 5700             |
| NGC 2808     | 9.5      | 0.26               | $10^{4}$  | 162               | 8500/1800        | 2700             |
| M15          | 10.3     | 0.42/0.2           | $10^{4}$  | 25                | 4900/700         | 1000             |
| M62          | 6.9      | 0.41               | $10^{4}$  | 36                | 2900/600         | 3000             |
| M80          | 10.0     | 0.21               | $10^{4}$  | 36                | 5300/1100        | 1600             |
| NGC 6397     | 2.7      | 0.16               | $10^{4}$  | 216               | 4300/900         | 50               |
| G1           | 780      | $\sim 1$           | $10^{4}$  | 28                | 4500             | 18000            |

Table 1: Recent Radio continuum observations on globular clusters

(Ting-Ni Lu, Albert K.H. Kong arXiv:1102.1668v1)



# QSO B2112+059 Illuminated Disk: $T_e \sim R^{-2}$ , $a_* = 0.5$ PG 2112+059

$$n = \frac{5}{4}, B(R_{\lambda}) = 50G, B_{H} = 4.5 \times 10^{3}G, \frac{p_{kin}}{p_{magn}} = 1$$

**PG 0026+129** Illuminated Disk:  $a_* = 0.5$  $n = \frac{5}{4}, B(R_{\lambda}) = 55G, B_H = 2 \times 10^4 G, \frac{p_{kin}}{p_{magn}} = 1$ 

 PG 0844+349
 Illuminated Disk:  $a_* = 1$  

 Ton 951

$$n = 1, \ B(R_{\lambda}) = 33.7G, \ B_{H} = 1.7 \times 10^{4}G, \ \frac{p_{kin}}{p_{magn}} = 50$$
  
3C390.3 Illuminated Disk:  $a_{*} = 1$   
 $n = 1, \ B(R_{\lambda}) = 39.3G, \ B_{H} = 3.8 \times 10^{3}G, \ \frac{p_{kin}}{p_{magn}} = 10^{2}$ 

| Table 2:    | Masses | s of the central           | DIACK NO                        | les and | polarizatio     | on in continu    | um       |
|-------------|--------|----------------------------|---------------------------------|---------|-----------------|------------------|----------|
| Object      | Type   | $\log \lambda L_{\lambda}$ | $\log \frac{M_{BH}}{M_{\odot}}$ | Ref.    | $P_{V}[\%]$     | n                | Ref.     |
|             |        | [erg/s] (opt.)             | 0                               |         |                 |                  |          |
| PG 0007+106 | Sy1    | 44.82                      | $8.73^{+0.08}_{-0.10}$          | 6       | $1.02 \pm 0.38$ | $0.15 \pm 0.25$  | 1        |
| PG 0026+129 | QSO    | 45.02                      | $8.59^{+0.07}_{-0.12}$          | 7       | $1.07 \pm 0.28$ | $-0.45 \pm 0.33$ | 1        |
| PG 0049+171 | Sy1.5  | 44.00                      | $8.35_{-0.10}^{+0.08}$          | 6       | $1.42 \pm 0.31$ | $-0.28\pm0.18$   | 1        |
| PG 0157+001 | Sy1.5  | 44.98                      | $8.17^{+0.08}_{-0.10}$          | 6       | $0.78 \pm 0.28$ | $-0.52 \pm 0.28$ | 1        |
| PG 0804+761 | QSO    | 44.94                      | $8.84^{+0.05}_{-0.06}$          | 7       | $1.00 \pm 0.38$ | $0.24 \pm 0.38$  | 1        |
| PG 0844+349 | Sy1    | 44.35                      | $7.97_{-0.23}^{+0.15}$          | 7       | $0.85 \pm 0.10$ | $-1.17 \pm 0.17$ | 1        |
| PG 0953+414 | QSO    | 45.40                      | $8.42^{+0.08}_{-0.10}$          | 6       | $0.39 \pm 0.12$ | $0.11 \pm 0.13$  | 1        |
| PG 1022+519 | Sy1    | 43.70                      | $7.15_{-0.11}^{+0.09}$          | 6       | $0.83 \pm 0.30$ | $-2.37\pm0.45$   | 1        |
| PG 1116+215 | QSO    | 45.40                      | $8.53_{-0.10}^{+0.08}$          | 6       | $0.57 \pm 0.12$ | $-1.26\pm0.13$   | 1        |
| PG 2112+059 | QSO    | 46.18                      | $9.00^{+0.09}_{-0.11}$          | 6       | $1.06 \pm 0.21$ | $0.40 \pm 0.15$  | 1        |
| PG 2130+099 | Sy1    | 44.46                      | $8.66^{+0.05}_{-0.06}$          | 7       | $0.62 \pm 0.15$ | $-0.05 \pm 0.32$ | 1        |
| PG 2209+184 | Sy1    | 44.47                      | $8.77^{+0.08}_{-0.10}$          | 6       | $0.83 \pm 0.29$ | $-0.75 \pm 0.21$ | 1        |
| PG 2214+139 | Sy1    | 44.66                      | $8.55_{-0.12}^{+0.09}$          | 6       | $1.58 \pm 0.18$ | $-0.69 \pm 0.15$ | 1        |
| PG 2233+134 | QSO    | 45.33                      | $8.04^{+0.08}_{-0.10}$          | 6       | $0.67 \pm 0.23$ | $0.28 \pm 0.28$  | 1        |
| 3C 390.3    | Sy1    | 43.99                      | $8.85_{-0.11}^{+0.09}$          | 6       | $1.80 \pm 0.22$ | $-0.61 \pm 0.15$ | 1        |
| I Zw 1      | Sy1    | 44.80                      | $7.44^{+0.09}_{-0.12}$          | 6       | $0.85 \pm 0.13$ | $-0.85 \pm 0.28$ | 2        |
| Mrk 509     | Sy1    | 44.28                      | $8.16_{-0.04}^{+0.04}$          | 7       | $0.84 \pm 0.14$ | $0.66 \pm 0.35$  | 2        |
| Mrk 573     | Sy1    | 44.40                      | $7.28^{+0.08}_{-0.10}$          | 8       | $0.98 \pm 0.24$ | $-2.35\pm0.14$   | 3        |
| Mrk 841     | Sy1.5  | 44.29                      | 8.52 + 0.08 = 0.10              | 6       | $1.07 \pm 0.25$ | $0.05 \pm 0.35$  | 2        |
| NGC 3227    | Sy1.5  | 42.38                      | $7.63^{+1.1}_{-1.9}$            | 7       | $0.98 \pm 0.24$ | $-2.55 \pm 0.21$ | $^{4,9}$ |
| NGC 3783    | Sy1    | 43.26                      | $7.47_{-0.09}^{+0.07}$          | 7       | $0.51 \pm 0.14$ | $-0.34 \pm 0.35$ | 2        |
| NGC 4593    | Sy1    | 43.09                      | $6.73_{-0.09}^{+0.03}$          | 7       | $0.34 \pm 0.13$ | $-3.44 \pm 0.45$ | 2,9      |
| NGC 5548    | Sy1    | 43.51                      | $7.83_{-0.02}^{+0.02}$          | 7       | $0.73 \pm 0.10$ | $-0.81 \pm 0.26$ | 5,9      |
| NGC 7469    | Sy1    | 43.72                      | $7.09^{+0.05}$                  | 7       | $0.26 \pm 0.06$ | $-1.16 \pm 0.43$ | 2        |

Table O. Ma of the central block below and polonization

(1) This paper; (2) Smith et al. (2002); (3) Nagao et al. (2004); (4) Axon et al. (2008)

(5) Goodrich and Miller (1994); (6) Vestergaard and Peterson (2006); (7) Peterson et al. (2004);

(8) Satyapal et al. (2005); (9) Wu and Han (2001).

(Afanasiev et al. arXiv:1104.3690v1, 2011)

1



Linear polarization and power-law index n versus black hole masses from the data of Table 2

(Afanasiev et al. arXiv:1104.3690v1, 2011)

|          | Object      | p   | $\boldsymbol{s}$ | $B(R_{\lambda})[G]$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------|-----|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | PG 0007+106 | 1/2 | 1                | 2.43                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PG 0026+129 | 3/4 | 5/4              | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PG 0049+171 | 3/4 | 5/4              | 13                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PG 0157+001 | 3/4 | 5/4              | 98                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PG 0804+761 | 3/4 | 3/2              | 3.4                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PG 0844+349 | 3/4 | 1                | 37                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1        | PG 0953+414 | 3/4 | 1                | 300                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1. 1. 1. | PG 1116+215 | 3/4 | 3/4              | 100                 | and the second sec |
| 1 3 1    | PG 2112+059 | 3/4 | 2                | 14.4                | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | PG 2130+099 | 1/2 | 1                | 27                  | a series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| II II    | PG 2209+184 | 1/2 | 3/4              | 16                  | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | PG 2214+139 | 1/2 | 5/4              | 2.8                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PG 2233+134 | 3/4 | 3/2              | 0.37                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 3C 390.3    | 3/4 | 1                | 6.4                 | E HALF AND A HALF HE CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |             |     |                  |                     | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 3: Physical parameters of the accretion disk obtained from our spectropolarimetric observations at the 6-m BTA telescope (SCORPIO) and published spectroscopic data.

(Afanasiev et al. arXiv:1104.3690v1, 2011)

## THANKS FOR ATTENTION!

