Investigation of combustion wave stability in the Zeldovich-Liñán model

V. V. Gubernov^{*}, A. V. Kolobov, A. A. Polezhaev

P.N. Lebedev Physical Institute
53, Leninskii prospect, Moscow 119991, Russian Federation
* Corresponding author: gubernov@lpi.ru

P.N.Lebedev Physical Institute of the Russian Academy of Science

H.S. Sidhu

University of New South Wales Australian Defence Force Academy Canberra ACT 2600, Australia

Zeldovich-Liñán model

- Introduced by Y.B. Zeldovich in 1948, analyzed by A. Liñán in 1971 using the activation energy asymptotics (AEA).
 - Y.B. Zeldovich, Zh. Phys. Khim. 22, 27 (1948)
 - A. Liñán, Insituto Nacional de Technica Aerospacial "Esteban Terradas" (Madrid), USAFOSR Contract No. E00AR68-0031, Technical Report No. 1 (1971).

 $\begin{array}{ll} \text{Chain-branching:} & A+B \to 2B & \mapsto Q=0, \ E_a>0 \\ \text{Chain-breaking:} & B+B+M \to 2P+M & \mapsto Q>0, \ E_a=0 \end{array}$

• ZL model and H_2 - O_2 (air) combustion - Y.B. Zeldovich, Kinet. Katal. 2, 305-318 (1961)

 $\begin{array}{ccc} A+B\rightarrow 3B, & \mapsto & 3H_2+O_2=2H+2H_2O, \\ B+B+M\rightarrow 2P+M & \mapsto & 2H+M=H_2+M \end{array}$

-A is the deficient component concentration, for example, O_2 -B is the H atoms concentration which are the only radicals The rates of global reactions are governed by elementary steps: $H + O_2 \rightarrow OH + H$ $H + H + M \rightarrow H_2 + M$ and $H + O_2 + M \rightarrow HO_2 + M$.

Model equations

- B.H. Chao, C.K. Law, Int. J. Heat Mass Transfer 37, 673 (1994).

• Governing PDEs

$$\rho c_p \frac{\partial T}{\partial t} = \lambda \Delta T + q_F W_A A_R \left(\frac{\rho Y_B}{W_B}\right)^2 \frac{\rho Y_M}{W_M},$$

 $\rho \frac{\partial Y_A}{\partial t} = \rho D_A \Delta Y_A - A_B \frac{\rho Y_A}{W_A} \frac{\rho Y_B}{W_B} e^{-E/RT},$

$$\rho \frac{\partial Y_B}{\partial t} = \rho D_B \Delta Y_B + W_B \left(A_B \frac{\rho Y_A}{W_A} \frac{\rho Y_B}{W_B} e^{-E/RT} - 2A_R \left(\frac{\rho Y_B}{W_B} \right)^2 \frac{\rho Y_M}{W_M} \right),$$

• Introducing the nondimensional variables

$$t' = \frac{\rho A_B}{\beta M^*}t, \quad x' = \sqrt{\frac{\rho^2 A_B c_p}{\lambda M^* \beta}}x, \quad u = \frac{T}{T^* \beta}, \quad v = \frac{Y_A}{Y_A^\infty}, \quad w = \frac{Y_B W_A}{Y_A^\infty W_B},$$

and dimensionless parameters

$$M^* = \frac{W_A}{Y_A^{\infty}}, \quad T^* = \frac{q_F Y_A^{\infty}}{2c_p}, \quad \beta = \frac{E}{RT^*}, \quad L_i = \frac{\lambda}{D_i \rho c_p}, \quad r = \frac{2\rho A_R Y_M}{A_B W_M}$$

Nondimensional equations

• Governing equations

 $u_t = \Delta u + rw^2,$ $v_t = L_A^{-1}\Delta v - \beta vwe^{\beta - 1/u},$ $w_t = L_B^{-1}\Delta w + \beta vwe^{\beta - 1/u} - r\beta w^2,$

where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

• Boundary conditions

•

 $u = u_a, \quad v = 1, \quad w = 0 \quad \text{for} \quad x \to +\infty,$

 $u_x = 0, \qquad v_x = 0, \qquad w_x = 0 \qquad \text{for} \qquad x \to -\infty.$

Travelling wave solution, $\xi = x - ct$ $u_{\xi\xi} + cu_{\xi} + rw^2 = 0,$ $L_A^{-1}v_{\xi\xi} + cv_{\xi} - \beta vwe^{\beta - 1/u} = 0,$ $L_B^{-1}w_{\xi\xi} + cw_{\xi} + \beta vwe^{\beta - 1/u} - r\beta w^2 = 0$

Liñán's analysis of flame structure

A. Liñán, Insituto Nacional de Technica Aerospacial "Esteban Terradas" (Madrid), USAFOSR
 Contract No. E00AR68-0031, Technical Report No. 1 (1971).

• Fast recombination $e^{-\beta} \ll r \to AEA$ 1-step: $c = L_A e^{-\beta} / \beta \sqrt{2r}$.

• Intermediate recombination $e^{-\beta} \sim r$

• Slow recombination $e^{-\beta} \gg r$

Flame speed

Dependence of (a) flame speed, c, and (b) maximal concentration of radicals, w_{max} , on the activation energy, β , for two values of the recombination parameter r = 0.02, r = 50 and $L_A = L_B = 1$.

Flame structure in the H_2 - O_2 mixture

Concentration of H and O2 (left axis) and temperature (right axis) pofiles for combustion wave in 26/13/61 H2/O2/Ar mixture at p = 1 atm and $T_a = 370$ K. Parameters of the model: $\beta \approx 3.9$, $r \approx 0.002$, $L_A \approx 2$, and $L_B \approx 0.3$. The flame speed, $c \approx 4$ m/s, whereas the numerical calculations using the detailed kinetic scheme yields 3.37 m/s according to O. Korobeinichev, T. Bolshova, Combust. Explos. Shock Waves 45 (2009) 507-510

Flame speed for H_2 -air mixture

Dependence of the flame speed, c, on equivalence ratio, ϕ , at normal conditions.

Stability analysis

• We seek the solution of the form

where $U(\xi)$, $V(\xi)$, $W(\xi)$ is the travelling combustion wave, $\xi = x - ct$ is a coordinate in the moving frame.

• Substituting this expansion into govening PDEs

$$\mathbf{v}_{\xi} = \hat{A}(\xi, oldsymbol{\lambda}, k) \mathbf{v},$$

where $\mathbf{v}(\xi) = [\phi, \psi, \chi, \phi_{\xi}, \psi_{\xi}, \chi_{\xi}]^T$ and $\hat{A}(\xi, \lambda, k)$ is 6×6 matrix those elements are functions of $U(\xi), V(\xi), W(\xi)$

- We seek λ and $k : \exists \mathbf{v}(\xi)$ bounded for both $\xi \to \pm \infty$. If for some $k \exists \lambda : Re\lambda > 0$ then the travelling wave is linearly unstable, otherwise, if $\forall k Re\lambda \leq 0$, then the travelling wave solution is linearly stable.
- Evans function $D(\lambda, k)$: for dispersion relation $\lambda(k)$ $\rightarrow D(\lambda, k) = 0$
- Nonlinear analisys FDE

Instabilities in 2D

Wave instability

Neutral stability boundary in the L_A vs. β plane for $L_B = 1$, $u_a = 0$ and r = 0.02, 0.1, 1, 10, 50 plotted with curves 1, 2, 3, 4, and 5, respectively.

Pulsating waves

Contour plots of the radical concentration profiles, w(x, y), sampled at three successive moments of time $t_1 = 80$ in panel (a), $t_2 = 145$ in panel (b), and $t_3 = 190$ in panel (c) for $L_A = 10$, $L_B = 1$, b = 7.5, and r = 0.1.

Cellular instability

Stability diagram on the L_A vs. β plane for $L_B = 1$, $u_a = 0$ and various values of r = 0.02, 0.1, 1, 10, and 50.

Cellular waves

Contour plots of the radical concentration profiles, w(x, y), for $L_A = 0.81$, $L_B = 1$, $\beta = 9.5$, r = 0.1.

Conclusions

- The stability of combustion waves in the Zeldovich-Liñán model is investigated in the adiabatic limit by using the Evans function method and by direct integration of the governing PDEs. The neutral stability boundary is found in the L_A vs β plane. The effect of variation of parameters is delineated.
- It is demonstrated that for the case of $L_A > 1$, the combustion wave loses stability with respect to wave perturbations. For the case of $L_A < 1$, the combustion wave loses stability with respect to cellular perturbations.
- It is demonstrated that as the critical parameter values for the onset of instability are crossed, either pulsating or cellular two-dimensional solutions emerge. The properties of these solutions are studied.
- Further investigation is required to validate the results with respect to experimental data for hydrogen-oxygen flames. Of special interest is to undertake such comparison for the predictions of the limits of stability and emergence of pulsating and cellular flames with complex dynamics.

- V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Stability of combustion waves in the Zeldovich–Liñán model, Combustion and Flame 159 (2012) 1185-1196
- V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Pulsating instabilities in the Zeldovich–Liñán model, Journal of Math. Chemistry 49 (2011) 1054-1070