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ON THE CRITERION OF STOCHASTIC

STRUCTURE FORMATION IN RANDOM MEDIA

V. I. Klyatskin

A.M. Obukhov Institute of Atmospheric Physics RAS

. . .Chaos is the place which serves to contain
all things; for if this had not subsisted neither
earth nor water nor the rest of the elements,
nor the Universe as a whole, could have been
constructed. . . .

Sextus Empiricus, Against the Physics, against
the Ethicists, R. G. Bury, p. 217, Harvard
University Press, 1997.

Here you can see the words of Sextus Empiricus that all
things have been constructed over the Chaos. There is a
question: in what way is it possible to do?

The answer is that it is possible on the base of chaos
properties, and my talk is about this.
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Introduction

Parametrically excited dynamical systems are encountered in all branches of physics.
Dynamical systems can be described by ordinary and partial differential equations.

Two features are characteristic of such parametric excitation in dynamic systems
described by partial differential equations:

1. On the one hand, at the initial stages of dynamic system evolution, such a
parametric excitation is accompanied by the increase of all statistical characteristics
of the problem solution (such as moment and correlation functions of any order)
with time;

2. On the other hand, separate field realizations can show the stochastic nonstationary
phenomenon of clustering in phase and physical spaces.

Clustering of a field is identified as the emergence of compact areas with large
values of this field against the residual background of areas where these values are
fairly low. Naturally, statistical averaging completely destroys all data on clustering.

The notion of clustering by itself is related to the spatial behavior of a dynamic
system in separate realizations! Consideration of clustering in terms of traditional
statistical characteristics such as moment and correlation functions of arbitrary order
is meaningless! Clustering either exists or not exists.

In itself, the physical phenomenon of structure formation in stochastic parametri-
cally excited dynamic systems is well known in physics [1-3].
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The examples are the Anderson localization for wave eigenfunctions of the statio-
nary one-dimensional Schrödinger equation with a random potential and the dynamic
localization of wave field intensity in a wave problem of propagation in randomly
layered medium (Helmholtz stochastic equation).

Moreover, in a number of cases, clustering of both passive scalar tracer (density
field) and vector tracer (magnetic field energy) can occur in problems on turbulent
transfer in the scope of kinematic approximation!

The basic stochastic equations for the density field ρ(r, t) and the nondivergent
magnetic field H(r, t) at the kinematic stage with homogeneous initial conditions
are the scalar continuity equation(

∂

∂t
+

∂

∂r
u(r, t)

)
ρ(r, t) = 0, ρ(r, 0) = ρ0, (1)

and the vector induction equation(
∂

∂t
+

∂

∂r
u(r, t)

)
H(r, t) =

(
H(r, t) · ∂

∂r

)
u(r, t), H(r, 0) = H0, (2)

where u(r, t) is the field of turbulent velocities.
Dynamic system density (1) and magnetic field (2) are conservative, and both the

total scalar mass M =
∫

drρ(r, t) and the magnetic flux
∫

dr H(r, t) remain constant
during the evolution. For the mean values the following equalities are a corollary of
the conservatism of these dynamic systems 〈ρ(r, t)〉 = ρ0, 〈H(r, t)〉 = H0.
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I illustrate structure formation in magnetic field by the extract from an internet-
page: What does puzzle astrophysicists so strongly?

Contrary to hypotheses formed for fifty years, at the boundary of planetary system
observers encountered a boiling foam of locally magnetized areas each of hundreds
of millions kilometers in extent, which form a non-stationary cellular structure in
which magnetic field lines are permanently breaking and recombining to form new
areas—magnetic "bubbles" [4].
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Note that the above partial differential equations are equivalent to the system
of characteristic equations for particles, which are the simplest purely kinematic
equations

d

dt
r(t) = u (r(t), t) , r(0) = r0.

Numerical simulations show that the behavior of a system of particles essentially
depends on whether the random field of velocities is nondivergent or divergent.
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This figure shows a schematic of the evolution
of the system of particles uniformly distributed
within the circle for a particular realization of
the nondivergent steady field u(r). In this case,
the particles relatively uniformly fill the region
within the deformed contour. The only feature
consists in the fractal-type irregularity of the
deformed contour.
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t = 0 t = 0.5
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On the contrary, in the case of the
potential velocity field u(r), particles uniformly
distributed in the square at the initial
instant will form clusters during the temporal
evolution. Results simulated for this case are
shown in this figure. We emphasize that the
formation of clusters in this case is purely a
kinematic effect.

This feature of particle dynamics disappears
on averaging over an ensemble of realizations of
random velocity field.
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Note that such type clustering in a system of particles
was found as a result of numerical simulating the so-called
Eole experiment with the use of the simplest equations of
atmospheric dynamics.

In this global experiment, 500 constant-density balloons
were launched in Argentina in 1970-1971; these balloons
traveled at a height of about 12 km and spread along the
whole of the southern hemisphere.

This figure shows the balloon distribution over the
southern hemisphere for day 105 from the beginning of
this process simulation; this distribution clearly shows that balloons are concentrated
in groups, which just corresponds to clustering.

Now we consider the simplest model of the transport problems (1) and (2), where
velocity field u(r, t) has the form

u(r, t) = v(t) sin(2kx),

to demonstrate the processes of density and magnetic fields clustering. In this model
the function v(t) is the gaussian random vector process with correlation tensor
〈vi(t)vj(t

′)〉 = 2σ2δijτ0δ(t − t′). Note that this form of velocity field corresponds to
the first term of the expansion in harmonic components and is commonly used in
numerical simulations.
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For such model partial differential equations for density field and magnetic field
have analytical solutions. The density field depends on x and solution has the form

ρ(x, t)/ρ0 =
1

eT (t) cos2(kx) + e−T (t) sin2(kx)
,
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where T (t) = 2k
t∫

0
dτvx(τ) is Wiener

random process. This figure shows
successive patterns of concentration field
rearrangement toward narrow neighborhoods
of points x ≈ 0 and x ≈ π/2, i.e., the
formation of clusters, in which relative
density is as high as 103 − 104, while
relative density is practically zero in
the whole other space. Note that the
realization of the density field passes
through the initial homogeneous state
at the instants t such that T (t) = 0.
The lifetimes of such clusters coincide on
the order of magnitude with the time of
cluster formation.



•Contents •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

For this velocity model the x-component of the magnetic field remains constant
(Hx(x, t) = Hx0), and magnetic field in the transverse (y, z)-plane (H⊥0 = 0) is

H⊥(x, t) = 2kHx0

t∫
0

dτ

[
eT (τ)cos2(kx)− e−T (τ)sin2(kx)

]
[
eT (τ)cos2(kx) + e−T (τ)sin2(kx)

]2vx(τ)v⊥(τ).
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Here are realization of energy of the
magnetic field generated in the transverse
plane, E(x, t) = H2

⊥(x, t).
The total energy concentrated in the

segment [0, π/2] increases rapidly with
time (a). A general space–time structure
of the magnetic energy clustering is
shown in (b).

Another example of problems of the parametric excitation is the wave propagation
problem in random media in terms of the complex Leontovich parabolic equation
with a random function ε(x, R) (x–axis is directed along the initial direction of wave
propagation).

∂

∂x
u(x, R) =

i

2k
∆Ru(x, R) +

ik

2
ε(x, R)u(x, R), u(x, R) = u0, (3)

Note that this equation is the Schrödinger equation with a random potential
ε(x, R), where coordinate x plays the role of time t.
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If we introduce the amplitude and phase of the wave field by the formula
u(x, R) = A(x, R) exp {iS(x, R)}, then we can derive the equation for wave field intensity
I(x, R) = |u(x, R)|2

∂

∂x
I(x, R) +

1

k
∇R {∇RS(x, R)I(x, R)} = 0, I(0, R) = I0, (4)

which coincides in form with the equation for the tracer density field in a random
potential flow, and, hence, the wave field intensity undergoes clustering which is
manifested as appearance of field caustic structure. In this case all one-point statistical
characteristics are independent of variable R.

A similar situation should also be observed in the case of the monochromatic
nonlinear problem on wave self-interaction in random inhomogeneous media described
by the nonlinear parabolic equation (nonlinear Schrödinger equation)

∂

∂x
u(x, R) =

i

2k
∆Ru(x, R) +

ik

2
ε(x, R; I(x, R))u(x, R), u(0, R) = u0(R),

because equation (4) is independent of the shape of the function ε(x, R; I(x, R)).
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Elements of the statistical topography of random fields

a b
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Randomness of medium parame-
ters in dynamic systems gives
rise to a stochastic behavior of
physical fields. Indeed, individual
samples of scalar two-dimensional
fields f(R, t), where R = (x, y),
resemble a rough mountainous
terrain. The figure shows examples
of realizations of (a) Gaussian
and (b) lognormal random fields
whose level curves are characterized
by different statistical structures.

Phenomenon of clustering ran-
dom fields can be detected and
described only on the basis of the
ideas of statistical topography. Similarly to common topography of mountain ranges,
the statistical topography studies the systems of contours (level lines in the 2D
case and surfaces of constant values in the 3D case) specified by the equality
f(r, t) = f = const.
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For analyzing a system of contours (for simplicity, we will deal with the two-
dimensional case and assume r = R), we introduce the singular indicator function
ϕ(R, t; f) = δ(f(R, t) − f) concentrated on these contours. The convenience of this
function consists, in particular, in the fact that it allows simple expressions for
quantities such as the total area of regions where f(R, t) > f (i.e., within level lines
f(R, t) = f)

S(t; f) =

∫
θ(f(R, t)− f)dR =

∞∫
f

df ′
∫

dR ϕ(R, t; f ′),

and the total ’mass’ of the field within these regions

M(t; f) =

∫
f(R, t)θ(f(R, t)− f)dR =

∞∫
f

f ′df ′
∫

dR ϕ(R, t; f ′),

where θ(f(R, t)− f) is the Heaviside theta function.
The mean value of indicator function over an ensemble of realizations of random

field f(R, t) determines the one-time (in time) and one-point (in space) probability
density P (R, t; f) = 〈δ (f(R, t)−f)〉 .
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Consequently, this probability density immediately determines ensemble-averaged
values of the above expressions S(t; f) and M(t; f):

〈S(t; f)〉 =

∞∫
f

df ′
∫

dR P (R, t; f ′), 〈M(t; f)〉 =

∞∫
f

f ′df ′
∫

dR P (R, t; f ′).

Consider now the conditions of occurrence of stochastic structure formation. It is
clear that, for a positive field f(R, t), the condition of clustering with a probability of
one, i.e., almost in all realizations, is formulated in the general case as simultaneous
tendency of fulfillment of the following asymptotic equalities for t →∞

〈S(t; f)〉 → 0, 〈M(t; f)〉 →
∫

dR 〈f(R, t)〉 .

On the contrary, simultaneous tendency of fulfillment of the asymptotic equalities
for t →∞

〈S(t; f)〉 → ∞, 〈M(t; f)〉 →
∫

dR 〈f(R, t)〉

corresponds to the absence of structure formation.
In the case of a spatially homogeneous field f(R, t), the corresponding probability

density P (R, t; f) is independent of R. In this case, statistical averages of the above
expressions (without integration over R) will characterize the corresponding specific
(per unit area) values of these quantities.
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In this case, random field f(R, t) is statistically equivalent to the random process
whose statistical characteristics coincide with the spatial one-point characteristics
of field f(R, t).

So, the specific mean area 〈Shom(t; f)〉 over which the random field f(R, t) exceeds
a given level f , coincides with the probability of the event f(R, t) > f at any spatial
point, i.e., 〈Shom(t; f)〉 = 〈θ(f(R, t)− f)〉 = P{f(R, t) > f} and therefore the mean
specific area offers a geometric interpretation of the probability of the event f(R, t) >

f , which is apparently independent of the point R. Consequently, in the case of a
homogeneous field, conditions of clustering are reduced to the tendency of asymptotic
equalities for t →∞

〈Shom(t; f)〉 = P{f(r, t) > f} → 0, 〈Mhom(t; f)〉 → 〈f(t)〉 .

Absence of clustering corresponds to the tendency of asymptotic equalities for t →∞

〈Shom(t; f)〉 = P{f(r, t) > f} → 1, 〈Mhom(t; f)〉 → 〈f(t)〉 .

Thus, in spatially homogeneous problems, clustering is the physical phenomenon
(realized with probability one, i.e., occurred in almost all realizations of a positive
random field) generated by a rare event whose probability tends to zero. Namely
availability of these rare events is the trigger that starts the process of structure
formation, and a structure formation itself is the property of random medium.

In the conditions of developed clustering, the field is simply absent in the most
part of space!
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As for setup time of such spatial structure formation, it depends on limiting
behavior of the right-hand expressions in all above asymptotic equalities.

It is clear that the above conditions of presence and absence of clustering field
f(R, t) bear no relation to parametric growth in time of the field statistical characteristics
such as moment and correlation functions of arbitrary order.

The above criterion of ’ideal ’ clustering (analogously to ideal hydrodynamic) describes
dynamics of cluster formation in the dynamic systems described in general by the
first-order partial differential equations.

As for actual physical systems, various additional factors come to play with time;
they are related to generation of random field spatial derivatives like spatial diffusion
or diffraction, which deform the pattern of clustering, but not dispose it.

In particular, a possible situation can occur when the probability density rapidly
approaches its steady-state regime P (R; f) for t → ∞. In this case, functionals like

〈S(f)〉 =
∞∫
f

df ′
∫

dR P (R; f ′) and 〈M(f)〉 =
∞∫
f

f ′df ′
∫

dR P (R; f ′) cease to describe further

deformation of the clustering pattern, and we must study temporal evolution of
functionals related to the spatial derivatives of field f(R, t), like the total length of
contours and the number of contours.
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a b

As an illustration of ’ideal ’ and ’deformed ’ clustering in nature we mention the
lava lakes (a) [5] and (b) [6].
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Another illustrations we have from the problem of the waves propagation in
random medium (3). With increasing the distance statistical characteristics of wave
intensity approach the saturated regime. In this region we have

〈In(x)〉 = n!, P (x, I) = e−I .

In this case, the mean specific contour length and mean specific number of wave
intensity contours continue to grow with distance; consequently, contour subdivision
occurs, which was observed

in laboratory experiments

a b

and in numerical simulations.

a b
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Lognormal positive random fields

The pattern of ideal clustering is realized for positive random lognormal fields E(r, t)
closely related to lognormal fields whose one-point probability density P (r, t; E) for
homogeneous case (E(r, 0) = E0) is independent of r and satisfies the equation

∂

∂t
P (t; E) =

{
α

∂

∂E
E + D

∂

∂E
E

∂

∂E
E

}
P (t; E), (5)

PSfrag replaements
E(r, 0)

r

r

1

tt1

E∗(t)

α > 0

E(r, t1)



PSfrag replaements
E(r, 0)

r
r

1

tt1

E∗(t)

α < 0

E(r, t1)

where coefficients α and D characterize diffusion in
E-space. For definiteness, we will term field E(r, t)
’energy’.

Here, parameter α can be both positive and
negative. Figure, schematically shows random realiza-
tions of energy for different signs of parameter α at
arbitrary spatial point. The solution of this equation
is given by

P (t; E) =
1

2E
√

πDt
exp

{
− ln2 [Eeαt/E0]

4Dt

}
. (6)
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The corresponding asymptotic expressions (t → ∞) for the specific values of the
volume of large fluctuations and their total specific values of the energy become
(2D − α > 0)

〈Vhom(t, E)〉 = P{E(r, t; α) > E} ≈


1

α

√
D

πt

(
E0

E

)α/D

e−α2t/(4D) (α > 0),

1− 1

|α|

√
D

πt

(
E

E0

)|α|/D

e−α2t/(4D) (α < 0),

〈Ehom(t, E)〉 ≈ E0e
(D−α)t

1− 1

(2D − α)

√
D

πt

(
E

E0

)(2D−α)/D

e−(2D−α)2t/(4D)

 .

So clustering of random field of energy E(r, t; α) will happen with a probability
one (i.e., almost in each realization) under the condition α > 0.

Note that the simplest Markovian lognormal process

y(t; α) = exp

−αt +

t∫
0

dτz(τ)

 , (7)

where z(t) is the Gaussian ’white noise’ process with the parameters 〈z(t)〉 = 0,
〈z(t)z(t′)〉 = 2Dδ(t− t′) is statistically equivalent to Eq. (5).
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This figure displays realizations of

process (7) for positive and negative
parameter α and D = |α|. The figure
shows the presence of rare but strong
fluctuations relative to the dashed curves
towards both large values and zero. Such
a property of random processes is called
intermittency. This property is common
to all random processes. The curve with respect to which the fluctuations are
observed is referred to as the typical realization curve. The concept of typical
realization curve of arbitrary random process z(t) concerns the fundamental features
of the behavior of a separate process realization.

{ { {

z
∗(t)

z(t)

tt1 t2

∆t1 ∆t2 ∆t3

This means, on the one hand, that for any t the
probabilities P{z(t) > z∗(t)} = P{z(t) < z∗(t)} = 1/2.
On the other hand, this curve has a specific property
that, for any time interval (t1, t2), the random process
z(t) ’winds’ around the curve z∗(t) such that the mean
times are

〈
Tz(t)>z∗(t)

〉
=

〈
Tz(t)<z∗(t)

〉
= 1

2 (t2 − t1) . Curve z∗(t)
can significantly differ from any particular realization of
process z(t) and cannot describe possible magnitudes of spikes.
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The typical realization curve for a Gaussian random process z(t) coincides with
the mean of the process z(t), i.e., z∗(t) = 〈z(t)〉, while the typical realization curve for
the lognormal random process y(t; α) is defined by the equality y∗(t) = e〈ln y(t;α)〉.

One can easily obtain that 〈ln y(t; α)〉 = −αt. Consequently, parameter α is the
Lyapunov characteristic index of this lognormal process. So, the typical realization
curve of this processes y∗(t) = e−αt, which are the exponentially decaying curve if
α > 0 and the exponentially increasing curve in the case of α < 0 .
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These figures show the lognormal probability density functions for positive and
negative parameters α (|α|/D = 1) and dimensionless times τ = Dt = 0.1 and 1.
Structurally, these probability distribution functions are absolutely different. The
only common feature of these distributions consists in the existence of long flat tails
that appear in distributions at τ = 1; these tails increase the role of high peaks of
process y(t; α) in the formation of the one-time statistics.
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In is clear that the following theorem holds:
Under parametric excitation, arbitrary positive conservative field shows the pheno-

menon of clustering with probability one.
Note that such conservative fields are the density field ρ(r, t) with parameters

α = D =

∞∫
0

dτ

〈
∂u(r, t + τ)

∂r

∂u(r, t)

∂r

〉
and the wave intensity in problem of wave

propagation in random media. The energy of magnetic field is not conservative field.
The probability density of magnetic energy P (t; E) is lognormal with the parameter

α = 2
d− 1

d + 2
(Dp −Ds) ,

where Ds =
1

d− 1

∞∫
0

dτ 〈ω(r, t+τ)ω(r, t)〉, Dp =

∞∫
0

dτ

〈
∂u(r, t + τ)

∂r

∂u(r, t)

∂r

〉
, d is dimen-

sion of space and ω(r, t) = ∇× u(r, t) is the curl of the velocity field.
Now parameter α can be both positive and negative and the typical realization

curve of random process E(t) is the exponential function E∗(t) = E0e
−αt.

For α > 0 the typical realization curve exponentially decreases at every spatial
point, which is indicative of cluster structure of energy field. Otherwise, for α < 0,
the typical realization curve exponentially increases with time, which is evidence of
general increase of magnetic energy at every spatial point.
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For this problem all moments of magnetic energy are functions exponentially
increasing with time (for both positive n > 0 and negative n < 0 values of n)
and parameters Dp and Ds appear as additive terms in all statistical moment and
correlation functions of magnetic field energy.

The all regularities obtained for the above statistical quantities have identical
structure for both noncompressible flow (Dp = 0) and potential flow (Ds = 0). Since
clustering is absent in the first case and present in the second one, it becomes
clear that the mentioned statistical characteristics include no data about stochastic
structure formation in separate realizations of magnetic field energy.

In addition, the initial induction equation (2) for magnetic field holds in the
framework of applicability of the kinematic approximation. In the presence of clustering,
magnetic field is absent in the most portion of space, and its aftereffect on the velocity
field is, naturally, insignificant.

On the contrary, in the absence of clustering, magnetic field is generated everywhere
in space; in these conditions, the kinematic approximation can be expected to be
valid only on a sufficiently short temporal interval, and any discussion of the effect of
the dynamic diffusion coefficient on the formation of magnetic field energy statistics
during such intervals is, in my opinion, unfounded.
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Conclusion

To conclude with, I note that a point commonly accepted in many works suggests
that, for an event to happen, it is required that this event was most probable.

For example, in recent work in Physics – Uspekhi (2010), Prof. G.R. Ivanitskii
calculated certain probabilities and came out with a hypothesis on origin of life from
the perspective of physics:

’Life can be defined as resulting from a game involving interactions
of matter one part of which acquires the ability to remember the
success (or failure) probabilities from the previous rounds of the
game, thereby increasing its chances for further survival in the
next rounds. This part of matter is currently called living matter.’

I cannot agree with the idea that origin of life is a game process. I believe that
origin of life is an event happened with probability one.

THANK YOU VERY MUCH!
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