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I) Introduction
Question  What is gravity?    ⇔    What is space-time?                   

Problems: Quantization, Dark Matter & Energy, Hierarchy,..
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Geometry in general depends on, with what kind 
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I) Introduction
Question  What is gravity?    ⇔    What is space-time?                   

Space (time?) can be only dissolved up to distances 
of order         .LP

LP is the shortest possible distance!

Point particles in classical Einstein gravity 
                        see smooth & continuous manifolds. 

However Einstein gravity is plagued by singularities !

Geometry in general depends on, with what kind 
of objects you test it.

Problems: Quantization, Dark Matter & Energy, Hierarchy,..
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         String theory: Theory of Quantum Gravity
How does a string see space-time? 

                                  

Shortest  possible scale in string theory:     Ls

We expect that geometry is changing at 
distances of the order of the string length.

The short distance nature of space can be possibly 
tested by string scattering  at high energies.
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         String theory: Theory of Quantum Gravity
How does a string see space-time? 

                                  

Shortest  possible scale in string theory:     Ls

We expect that geometry is changing at 
distances of the order of the string length.

The short distance nature of space can be possibly 
tested by string scattering  at high energies.

●  Non-commutative geometry:

Stringy  (non)- geometry: deformed geometry:

●  Non-associative geometry:

[Xi, Xj ] � O(Ls)

[[Xi, Xj ], Xk] � O(Ls)
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Langrange function:

Canonical momenta:

Mechanical momenta:

L =
1
2
(pi)2 =

1
2
(ẋi �Ai)2

pi =
�L

�ẋi
= ẋi �Ai

Configuration space: M = T �Q ⇤B = rot ⇤A,

pi = ẋi = pi + Ai

Non-commutative (Poisson) algebra

⇥ij = {xi, xj} = 0 , ⇥ij = {pi, pj} = 0 , {xi, pj} = �j
i

⇤ij = {xi, xj} = 0 , ⇤̄ij = {pi, pj} = ⇥ijkBk , {xi, pj} = �j
i

II) Point particle in a magnetic field
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Point particle in the field of a magnetic monopole:
(R. Jackiw)

⌅B � H2(Q), H = dB = ⇥�magn (B is non-closed)

This leads to:

...   charge density of a magnetic monopole.�magn

�̄ijk = {{pi, pj}, pk} + perm. = Hijk

Twisted Poisson structure.

As we will see, we will get a twisted Poisson structure for closed strings, 
however for the position operators instead of the momentum operators.

⇥ij = {xi, xj} = 0 , ⇥̄ij = {pi, pj} = Hijkxk , {xi, pj} = �j
i

(C. Klimcik, T. Strobl, (2002); A. Alekseev, T. Strobl, (2005); C. Saemann, R. Szabo, arXiv:1106.1890)
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III) Non-geometric flux compactifications
(Non-commutative/non-associative closed string geometry)
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III) Non-geometric flux compactifications
(Non-commutative/non-associative closed string geometry)

Recall standard Riemannian geometry:

  -   Flat space: Triangle: � + ⇥ + ⇤ = ⌅

- Curved space: Triangle: � + ⇥ + ⇤ > ⌅(< ⌅)

Manifold: need different coordinate charts, which are 
patched together by coordinates transformations, i.e.
group  of diffeomorphisms: Di�(M) : f : U � U �
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Properties of Riemannian manifolds:

● distances between two points can be arbitrarily short.

● coordinates commute with each other:

[Xi, Xj ] = 0

Now we want to understand, how extended closed 
strings may possibly see the (non)-geometry of space.

This is the situation, if one is using point particles to 
probe distance and the geometry of space.
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We will encounter two different interesting situations:
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We will encounter two different interesting situations:

 -  Non-geometric Q-fluxes: spaces that are locally still     
      Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are 
not only diffeomorphisms but also T-duality transformations:

Di�(M) ⇥ Di�(M)� SO(d, d)
Q-space will become non-commutative: [Xi, Xj ] �= 0
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We will encounter two different interesting situations:

 -  Non-geometric Q-fluxes: spaces that are locally still     
      Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are 
not only diffeomorphisms but also T-duality transformations:

Di�(M) ⇥ Di�(M)� SO(d, d)
Q-space will become non-commutative: [Xi, Xj ] �= 0

 -  Non-geometric R-fluxes: spaces that are even 
locally not anymore manifolds.

R-space will become non-associative:

[[Xi, Xj ], Xk] + perm. �= 0
Physics is nevertheless smooth and well-defined!
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T-duality:
Consider compactification on a circle with radius R:

X(⇥,�) = XL(⇥ + �) + XR(⇥ � �)

XL(⇤ + ⇥) =
x

2
+ pL(⇤ + ⇥) + i

⇥
�⇥

2

�

n ⇤=0

1
n

�ne�in(⇥+�) ,

XR(⇤ � ⇥) =
x

2
+ pR(⇤ � ⇥) + i

⇥
�⇥

2

�

n ⇤=0

1
n

�̃ne�in(⇥��)

pL =
1
2

�
M

R
+ (�⇥)�1NR

⇥
,

pR =
1
2

�
M

R
� (�⇥)�1NR

⇥ p = pL + pR =
M

R
p̃ = pL � pR = (�⇥)�1NR

(dual momenta - winding modes)

(KK momenta )
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T-duality:

X̃(⇥,�) = XL �XR

R � Rc =
⇥

��

T : R �⇥ ��

R
, M �⇥ N

● Dual space coordinates:

(X, X̃) :        Doubled geometry:

●  Shortest possible radius:

T-duality is part of stringy diffeomorphism group.

T : X ⇥⇤ X̃ , XL ⇥⇤ XL , XR ⇥⇤ �XR

(O. Hohm, C. Hull, B. Zwiebach (2009/10))

T : p ⇥⇤ p̃ , pL ⇥⇤ pL , pR ⇥⇤ �pR .
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T-fold:     Patching uses T-duality.

e.g. torus fibrations

U U �

E�(U �)E(U)

E = G + B

E� = aEat in U ⇥ U � , a � GL(d, Z)Geometric background:

E� =
aE + b

cE + d
in U � U �

Non-geometric background:
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Example: torus bundle over        :S1

ds2 = dx2
3 +

1
1 + x2

3

(dx2
1 + dx2

2)Metric:

B-field: Bx1,x2 =
x3

1 + x2
3

E(x3 + 2�) =
aE(x3) + b

cE(x3) + d
� SO(2, 2; Z)

Monodromy:               is periodic:  x3
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Mathematical framework:
-   Doubled field theory:  uses completely SO(d,d) 

invariant formalism.

-   Generalized complex geometry:  uses doubled 
tangent space              .T � T �
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Mathematical framework:
-   Doubled field theory:  uses completely SO(d,d) 

invariant formalism.

-   Generalized complex geometry:  uses doubled 
tangent space              .T � T �

D. Andriot, M. Larfors, D.L. P. Patalong, arXiv:1106.4015

D. Andriot, O. Hohm, M. Larfors, D.L. P. Patalong, arXiv:1202.3060, 1204.1979

Well-defined (10D) effective action for non-geometric 
backgrounds can be constructed.

Standard effective action is in general not well-defined 
for non-geometric backgrounds:

SNS ⇤
⇤

dx10

�
R� 1

12
H2 + · · ·

⇥

● Relation to gauged supergravity in 4D

● Moduli stabilization, de Sitter solutions, ...
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Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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NS H-fluxChain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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NS H-flux
 

geometric 
flux

Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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NS H-flux
 

geometric 
flux

non-
geom. Q-flux

Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:
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Dabholkar, Hull, 2005)
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NS H-flux
 

geometric 
flux

non-
geom. Q-flux

non-
geom. R-flux

Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

Flat 3-torus with
H-flux

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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NS H-flux
 

geometric 
flux

non-
geom. Q-flux

non-
geom. R-flux

Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

Flat 3-torus with
H-flux

Twisted (curved)
Riemannian 3-torus 

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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NS H-flux
 

geometric 
flux

non-
geom. Q-flux

non-
geom. R-flux

Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

Flat 3-torus with
H-flux

Twisted (curved)
Riemannian 3-torus 

non-comm. T-fold with Q-flux:

[Xi, Xj ] �= 0

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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NS H-flux
 

geometric 
flux

non-
geom. Q-flux

non-
geom. R-flux

Chain of 3 T-dualities:          

We will consider a class of four different 3-dimensional
flux backgrounds, which are related by T-duality:

F (3) : H � � � Q � R
Tx1 Tx2 Tx3

Flat 3-torus with
H-flux

Twisted (curved)
Riemannian 3-torus 

non-comm. T-fold with Q-flux:

[Xi, Xj ] �= 0
Non-associative 

„Space“ with R-flux
[[Xi, Xj ], Xk] �= 0

(Shelton, Raylor, Wecht, 2005;
Dabholkar, Hull, 2005)
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Three-dimensional flux backgrounds:

Fibrations: 2-dim. torus that varies over a circle:

T 2
x1,x2 �� M3 �� S1

x3

The fibration is specified by its monodromy properties.
Two T-dual cases:
(i) Geometric spaces (manifolds):  geometric     - flux

x3 � x3 + 2� ⇥ ⇥(x3 + 2�) =
a⇥(x3) + b

c⇥(x3) + d

complex structure is non-constant:

�

Mittwoch, 30. Mai 12



Three-dimensional flux backgrounds:

Fibrations: 2-dim. torus that varies over a circle:

T 2
x1,x2 �� M3 �� S1

x3

The fibration is specified by its monodromy properties.
Two T-dual cases:
(i) Geometric spaces (manifolds):  geometric     - flux

x3 � x3 + 2� ⇥ ⇥(x3 + 2�) =
a⇥(x3) + b

c⇥(x3) + d

complex structure is non-constant:

�

Mittwoch, 30. Mai 12
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Three-dimensional flux backgrounds:

Fibrations: 2-dim. torus that varies over a circle:

T 2
x1,x2 �� M3 �� S1

x3

The fibration is specified by its monodromy properties.
Two T-dual cases:

(ii) Non-geometric spaces (T-folds): non-geometric Q-flux

⇥(x3 + 2�) =
a⇥(x3) + b

c⇥(x3) + d
x3 � x3 + 2� ⇥

size + B-field is non-constant:

(i) Geometric spaces (manifolds):  geometric     - flux

x3 � x3 + 2� ⇥ ⇥(x3 + 2�) =
a⇥(x3) + b

c⇥(x3) + d

complex structure is non-constant:

�
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Three-dimensional flux backgrounds:

Fibrations: 2-dim. torus that varies over a circle:

T 2
x1,x2 �� M3 �� S1

x3

The fibration is specified by its monodromy properties.
Two T-dual cases:

(ii) Non-geometric spaces (T-folds): non-geometric Q-flux

⇥(x3 + 2�) =
a⇥(x3) + b

c⇥(x3) + d
x3 � x3 + 2� ⇥

size + B-field is non-constant:

(i) Geometric spaces (manifolds):  geometric     - flux

x3 � x3 + 2� ⇥ ⇥(x3 + 2�) =
a⇥(x3) + b

c⇥(x3) + d

complex structure is non-constant:

�
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Specific example:

X3(⇤,⇥ + 2�) = X3(⇤,⇥) + 2�N3

(Complex coordinates:                                  )XL,R = X1
L,R + iX2

L,R

winding 
number

XL(⌅,⇤ + 2⇥) = ei�XL(⌅,⇤) , � = �2⇥N3H

-monodromyZ4
D. L.,  JEHP 1012 (2011) 063, arXiv:1010.1361,
C. Condeescu, I. Florakis, D. L., arXiv:1202.6366
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Corresponding closed string mode expansion   ⇒

(shifted oscillators!)

XL(⌃ + ⇧) = i

⇥
�⇥

2

�

n⇤Z

1
n� ⇤

�n��e�i(n��)(⇤+⇥) , ⇤ =
⇥

2⌅
= �N3H

Specific example:

X3(⇤,⇥ + 2�) = X3(⇤,⇥) + 2�N3

(Complex coordinates:                                  )XL,R = X1
L,R + iX2

L,R

winding 
number

XL(⌅,⇤ + 2⇥) = ei�XL(⌅,⇤) , � = �2⇥N3H

-monodromyZ4
D. L.,  JEHP 1012 (2011) 063, arXiv:1010.1361,
C. Condeescu, I. Florakis, D. L., arXiv:1202.6366
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Corresponding closed string mode expansion   ⇒

(shifted oscillators!)

XL(⌃ + ⇧) = i

⇥
�⇥

2

�

n⇤Z

1
n� ⇤

�n��e�i(n��)(⇤+⇥) , ⇤ =
⇥

2⌅
= �N3H

Then one obtains:

[XL(⇥,�), X̄L(⇥,�)] = �

� = ��
�

n⇥Z

1
n� ⇥

= ���⇤ cot(⇤N3H)

Specific example:

X3(⇤,⇥ + 2�) = X3(⇤,⇥) + 2�N3

(Complex coordinates:                                  )XL,R = X1
L,R + iX2

L,R

winding 
number

XL(⌅,⇤ + 2⇥) = ei�XL(⌅,⇤) , � = �2⇥N3H

-monodromyZ4
D. L.,  JEHP 1012 (2011) 063, arXiv:1010.1361,
C. Condeescu, I. Florakis, D. L., arXiv:1202.6366
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Right moving torus coordinates:

XR(⇤,⇥ + 2�) = e�i�XR(⇤,⇥)
This is very similar to asymmetric orbifolds.  A specific string solution on a freely 
action asymmetric orbifold was recently constructed: C. Condeescu, I. Florakis, D. L., arXiv:1202.6366
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Right moving torus coordinates:

XR(⇤,⇥ + 2�) = e�i�XR(⇤,⇥)
This is very similar to asymmetric orbifolds.  A specific string solution on a freely 
action asymmetric orbifold was recently constructed: C. Condeescu, I. Florakis, D. L., arXiv:1202.6366

-  For the case of non-geometric Q-fluxes one finally gets: 

dual momentum (winding) in third direction

[X1, X2] � iL3
s F (3) p̃3
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Right moving torus coordinates:

XR(⇤,⇥ + 2�) = e�i�XR(⇤,⇥)
This is very similar to asymmetric orbifolds.  A specific string solution on a freely 
action asymmetric orbifold was recently constructed: C. Condeescu, I. Florakis, D. L., arXiv:1202.6366

-  For the case of non-geometric Q-fluxes one finally gets: 

dual momentum (winding) in third direction

[X1, X2] � iL3
s F (3) p̃3

Corresponding uncertainty relation:

The spatial uncertainty in the            - 
directions grows with the dual momentum in 

the third direction: non-local strings with 
winding in third direction.

X1, X2

(�X1)2(�X2)2 � L6
s (F (3))2 ⇥p̃3⇤2
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-  For the case of non-geometric R-fluxes one  
   finally gets: 

Corresponding uncertainty relation:

[X1, X2] � iL3
s F (3) p3

(�X1)2(�X2)2 � L6
s (F (3))2 ⇥p3⇤2

Mittwoch, 30. Mai 12



-  For the case of non-geometric R-fluxes one  
   finally gets: 

Corresponding uncertainty relation:

[X1, X2] � iL3
s F (3) p3

(�X1)2(�X2)2 � L6
s (F (3))2 ⇥p3⇤2

[p3, X3] = �iUse

Non-associative algebra!

This nicely agrees with the non-associative closed 
string structure found by Blumenhagen, Plauschinn in 
the SU(2) WZW model:  arXiv:1010.1263

(twisted Poisson structure )

=⇥ [[X1, X2], X3] + perm. � F (3) L3
s
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IV)  Outlook & open questions
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 ●   Can geometry and strings be described as an 
      emergent concept (from particle species)?  

(G.Dvali, C. Gomez, D.L., work in progress)
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 ●   Is there are non-commutative (non-associative) 
      theory of gravity?  (Non-commutative geometry &  gravity:  P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess (2005))

 ●   What is the generalization of quantum  
      mechanics for this non-associative geometry? 
      How to represent this algebra (octonians?)? 

IV)  Outlook & open questions

 ●   The ten-dimensional effective action for      
      non-geometrical fluxes. 

●  String scattering amplitudes in 
 non-geometric backgrounds.

(R. Blumenhagen, A. Deser, D.L. Plauschinn, F. Rennecke, arXiv:1106.0316)

 ●   Can geometry and strings be described as an 
      emergent concept (from particle species)?  

(G.Dvali, C. Gomez, D.L., work in progress)

Mittwoch, 30. Mai 12


