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– shifting the critical electric field at strong coupling



AdS/CFT for Wilson Loops
———————————– Maldacena (1998)

Rey, Yee (1998)

Wilson loop in N = 4 SYM = IIB open superstring in AdS5 × S5

WSYM(C) =
∑

S:∂S=C

e
−A

IIB on AdS5⊗S5

)(
S

W =  Σ

C = (xµ(σ),
∫ σ

dσ |ẋ|ni)

— loop in the boundary of AdS5 ⊗ S5

e.g. ni = (1,0,0,0,0,0) ⇒ 4D contour xµ(σ)

Circular loop:

AdS (supergravity) Berenstein, Corrado, Fischler, Maldacena (1998)
Drukker, Gross, Ooguri (1999)

CFT (exact) Erickson, Semenoff, Zarembo (2000)
Drukker, Gross (2001)

(perfect agreement !!!)



Minimal surface in AdS for circular loop
———————————–Berenstein, Corrado, Fischler, Maldacena (1998)

Drukker, Gross, Ooguri (1999)

Upper half-plane (UHP) parametrization of the surface:
z = x+ iy (y > 0) is customary in string theory.
Standard embedding space coordinates Y−1, Y0, Y1, Y2, Y3, Y4 obey

Y · Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = −1 (1)

The Euler–Lagrange equations in the embedding Y -space are

(−∆+2)Yi = 0, ∆ = y2
(

∂2

∂x2
+

∂2

∂y2

)
and the “mass” 2 arises because of the presence of the Lagrange
multiplier which is used to implement Eq. (1).

Solution for the minimal surface in AdS for circular boundary:

Y1 =
1− x2 − y2

2y
Y2 =

x

y
Y−1 =

1+ x2 + y2

2y
Y4 = Y0 = Y3 = 0



Minimal surface in AdS for circular loop (cont.)
———————————–

On the Poincare patch

Z ≡
R

Y−1 − Y4
=

2y R

1+ x2 + y2

X1 ≡ ZY1 =
1− x2 − y2

1+ x2 + y2
R X2 ≡ ZY2 =

2xR

1+ x2 + y2

is a sphere X2
1 +X2

2 + Z2 = R2 with a circular boundary for Z = 0.

The induced metric

dℓ2 ≡ dY · dY =
dX2

1 +dX2
2 +dZ2

Z2
=

dx2 +dy2

y2
.

is the Poincare metric of the Lobachevsky plane.



Dirichlet Green function in AdS
———————————–

Extension of Douglas’ (1931) algorithm for finding minimal surfaces

to the Lobachevsky plane:

• to construct the Dirichlet Green function on the Lobachevsky plane

• to derive the Poisson formula for the Lobachevsky plane.

This will reconstruct the minimal surface from its boundary value

– finding the minimal surface is reduced to minimizing a boundary

functional with respect to reparametrizations.

Dirichlet Green function on the Lobachevsky plane depends on the

(geodesic) distance between images of the points (x1, y1) and (x2, y2):

L2 =
(x1 − x2)

2 + (y1 − y2)
2

4y1y2
.

Acting by the operator (−∆ + 2), we obtain the Legendre equation

whose solution for the Dirichlet Green function is

G = −
3

4π

(
(x1 − x2)

2 + y21 + y22
4y1y2

ln
(x1 − x2)

2 + (y1 − y2)
2

(x1 − x2)2 + (y1 + y2)2
+1

)
(2)



Poisson formula in AdS
———————————–

Poisson formula reconstructs a harmonic function in the Lobachevsky

plane from its boundary value. We take the normal derivative of

Eq. (2) near the boundary at a certain minimal value y2 = ymin to

regularize divergences:

∂G (x1, y1;x2, y2)

∂y2

∣∣∣∣∣
y2=ymin

=
2y21ymin

π((x1 − x2)2 + y21)
2
+O(y3min).

Finally, we obtain

Yi(x, y) =
∫ +∞

−∞

ds

π

2Yi(t(s))y
2ymin

((x− s)2 + y2)2
(3)

where Yi(t(s)) is the boundary value and t(s) (dt/ds ≥ 0) is a possible

reparametrization of the boundary – crucial in Douglas’ algorithm.

This extends the Poisson formula to the Lobachevsky plane.



Poisson formula in AdS (cont.)
———————————–

The above spherical solution is reproduced by Eq. (3) from the bound-

ary values

Y1(t) =
1− t2

2ymin
Y2(t) =

t

ymin
Y−1(t) =

1+ t2

2ymin
Y0(t) = Y3(t) = Y4(t) = 0 (4)

for t(s) = s, which means that no reparametrization of the boundary

is required for a circle, in analogy with flat plane.

This is because the coordinates in use are conformal for a circle.

Note that ymin is nicely canceled, when (4) in substituted in Eq. (3).



An extension of Douglas’ functional to AdS
———————————–

Douglas integral in flat space

Sflat =
1

4π

∫
ds1

∫
ds2

(xB(t(s1))− xB(t(s2)))
2

(s1 − s2)2
(5)

to be minimized with respect to the functions t(s), reparametrizing
the boundary. The minimization is required for X(x, y) to obey a
conformal gauge, where the Nambu–Goto would coincide with the
quadratic (Polyakov) action.

Douglas integral in AdS space SAdS = Sdiv + Sreg Ambjørn, Y.M. (2012)

Sreg =
1

2π

∫
ds1

∫
ds2(YB(t(s1))−YB(t(s2)))

2y2min

[
1

(s1 − s2)4

]
reg

(6)

[
1

(s1 − s2)4

]
reg

=

[
1

((s1 − s2)2 +4y2min)
2
+

32y2min

((s1 − s2)2 +4y2min)
3

−
384y4min

((s1 − s2)2 +4y2min)
4

]
.

This boundary functional to be minimized with respect to t(s).



Regularization by shifting the boundary
———————————–
Integral in Eq. (6) is like in Eq. (5), while the denominator in Eq. (6)
is (s1 − s2)

4 rather than (s1 − s2)
2 as in Eq. (5). This results in the

well-known UV divergences regularized by shifting the boundary from
y = 0 to y = ymin. In the dual language of D-branes this corresponds
to the breaking Maldacena (1998), Rey, Yee (1998)

U(N) −→ U(N − 1) × U(1) by assigning a finite mass to the U(1)
gauge boson. This mass is associated with shifting the boundary to
the slice Z = ε, so that from Eq. (4)

ymin(t) =
ε

2R
(t2 +1)

The divergent part

Sdiv = 2π
R− ε

ε
,

comes from (s1 − s2) ∼ ymin and does not depend on t(s). The
regularized part Sreg now gives a finite contribution in view of the
important formula ∫

ds s2
[
1

s4

]
reg

= 0.



Reparametrization path integral in N = 4 SYM
———————————–
Reparametrization path integral for the circular Wilson loop in N = 4
SYM

W (circle) = e−
√
λSdiv/2π

∫
Ddifft(s) e

−
√
λSreg[t]/2π, (7)

where

Sreg[t] =
1

2π

∫
ds1ds2 (t(s1)− t(s2))

2
[

1

(s1 − s2)4

]
reg

since Sdiv does not depend on the reparametrization.

The constant
√
λ is prescribed by the AdS/CFT correspondence

√
λ =

R2
AdS

α′

but we consider it as a parameter to be fixed by comparing with the
N = 4 SYM Wilson loop.

Expanding the reparametrizing function t(s) = s+ 1
4√
λ
β(s) we have

√
λSreg =

1

2π

∫
ds1ds2 (β(s1)− β(s2))

2
[

1

(s1 − s2)4

]
reg

(8)



Reparametrization path integral in N = 4 SYM (cont.)
———————————–

The action is exact, but we expand in 1/ 4√λ to quadratic order be-

cause the measure for integrating over subordinated functions with

dt(s)/ds ≥ 0 is highly nonlinear. Only to the quadratic order it can

be substituted by the ordinary Lebesgue measure.

The integral (8) has three zero modes

β1(s) = 1, β2(s) = s, β3(s) = s2

which is a consequence of three SL(2,R) symmetries.

These result in a preexponential factor of λ−3/4 in a full analogy with

the string theory analysis Drukker, Gross (2001)

We thus obtain from the ansatz (7) at large λ:

W (circle) ∝ λ−3/4 e
√
λ

reproducing the result Erickson, Semenoff, Zarembo (2000)

for the N = 4 SYM perturbation theory, providing λ is identified with

the ’t Hooft coupling.



Mass-dependence of the effective action
———————————–

We have consider so far the λ-dependence of the one-loop effective

action rather than its dependence on the U(1) boson mass

Maldacena (1998), Rey, Yee (1998)

m =

√
λ

2πε

The calculation is pretty much similar to that of Olesen, Y.M. (2010)

for a T × R rectangle in flat space, where the Lüscher term was

obtained from the reparametrization path integral In that case T/R

was large, now R/ε is large.

The computation is performed by a mode expansion

β(s) =
∑
n

βnfn(s) f−n(s) = f∗n(s)

using a complete set of orthogonal (complex) basis functions fn(s)

and then doing the Gaussian integrals over βn’s.



Mass-dependence of the effective action (cont.)
———————————–

Restricting ourselves by those modes for which the integral (8) has

maximal “divergence” ∼ (R/ε)ν, we obtain Ambjørn, Y.M. (2012)

∏
n

(
R

ε

)−ν/2
=
(
R

ε

)ν/2
= e

ν
2 ln(R/ε)

where the product goes over those modes for which the integral (8)

is ∼ (R/ε)ν and the product is understood via the ζ-function regular-

ization.

The value of ν is determined by the Hausdorff dimension of typical

trajectories in the reparametrization path integral which is zero

Buividovich, Y.M. (2010)

This corresponds to

ν = 3



Circular loop and the Schwinger effect
———————————–

Saddle-point (Euclidean) action determining the exponent of the pro-

duction rate in a constant electric field is given by the minimum of

S = 2πRm− π|eE|R2 − lnW (circle)

with respect to the radius R of the circle. This effective action

emerges after performing the path integral over (pseudo)particle tra-

jectories, representing the vacuum-to-vacuum amplitude in an exter-

nal constant electric field.

In the path integral, first the integral over the proper time has a saddle

point, and then the saddle-point trajectory is a circle of (large) radius

R = m/|eE| Affleck, Alvarez, Manton (1982)

The circle lies in the µ, ν-plane, when the constant electric field E is

the µ, ν-component of the field strenght Fµν.

The existence of this saddle point is justified for small |eE|, when the

logarithm of the Wilson loop on the right-hand side is subleading at

weak couplings and contributes only to the preexponential.



Holographic Schwinger effect in N = 4 SYM
———————————– Gorsky, Saraikin, Selivanov (2002)

Holographic description of the Schwinger effect in SYM:

In the gravity approximation the minimal surface does not fluctuate,

so the classical action reads

√
λScl =

√
λπ

(
cosh ρ− 1−

|eE|
m2

sinh2 ρ

)

where sinh ρ = R/ε = 2πmR/
√
λ. This formula is applicable for

|eE| . m2, when the minimization of Scl with respect to ρ gives

cosh ρ0 =
2πm2

|eE|
√
λ

(9)

This equation has no solution for ρ0 when Semenoff, Zarembo (2011)

|eE| > 2πm2/
√
λ, which implies the existence of a critical electric field

like in string theory.

How fluctuations about the minimal surface affect this very interesting

result?



Schwinger effect in N = 4 SYM (cont.)
———————————– Ambjørn, Y.M. (2012)

For the sum of Scl plus the contribution from fluctuations about the
minimal surface in the quadratic approximation we have

√
λScl+1loop =

√
λπ

(
cosh ρ− 1−

|eE|
m2

sinh2 ρ

)
−

ν

2
ln cosh ρ (10)

The negative sign in the second line of this formula is like for the
Lüscher term in string theory.

The minimum of the effective action (10) is now reached for

1

cosh ρ0
=

√
λ

ν

1−
√
1−

ν|eE|
πm2

 (11)

so the solution (9) is only slightly modified by quantum fluctuations.
They shift the critical value of the constant electric field to

|eEc| = πm2
(

2√
λ
−

ν

λ

)
where ν = 3. Thus the quantum fluctuations about the minimal
surface result in a 1/

√
λ correction at large λ, as it might be expected.



Fluctuations of open superstring in AdS5 × S5

———————————– Kristjansen, Y.M. (2012)

Fluctuations about the minimal surface result at one loop in the ratio

of the determinants Drukker, Gross, Tseytlin (2000)

Z
(1)
AdS =

det
(
−∆gh

ij + δij
)1/2
ghost

det
(
−∆ij + δij

)1/2
long.

det
(
−∆̂ +R(2)/4+ 1

)8/2
Fermi

det (−∆+2)
3/2
Bose det (−∆)

5/2
Bose

The ratio of ghost to longitudinal dets is generically not 1 because of

different boundary conditions.

The strategy is to assume Z
(1)
flat = 1 and calculate the ratio

Z
(1)
AdS

Z
(1)
flat

=
det (−∆)

det
(
−∆ij + δij

)1/2
det

(
−∆̂ +R(2)/4+ 1

)
det

(
−∆̂ +R(2)/4

)
8/2(

det (−∆)

det (−∆+2)

)3/2

of massive to massless dets noting that the ghost dets are the same.



Fluctuations of open superstring in AdS5×S5 (cont.)
———————————–
Every ratio of massive to massless dets is computable either by the
Seeley coefficients (modulo a constant) Drukker, Gross, Tseytlin (2000)

or by direct computation of 1D×angular dets Kruczenski, Tirziu (2008)

The structure that appears in the log of the ratio is like

ln
det(−∆+ µ2)

det(−∆)
= −µ2

1

4π

∫ √
g ln

√
g = µ2

1

2πε
(lnΛε+1)+ const.

with the total coefficient (extracted from the Seeley coefficients)
2×1 (longitudinal) + 3×2 (transversal) - 8×1 (GS fermions) =0

Therefore Z
(1)
AdS = const. does not depend on ε.

Like in the flat space the Liouville field φ(x, y) (gab = eφδab) decouples
in the bulk, while its boundary value is related to the reparametrizing
function t(s) as

dt(s)

ds
= eφ(s,0)/2

We are thus left with the same boundary action as previously discussed
(= AdS Douglas’ integral), reproducing the same effective action.



Fluctuations of open superstring in AdS5×S5 (cont.)
———————————–

const. is calculable by the Gel’fand–Yaglom method:

det
(
−∂2 + V1(x)

)
det

(
−∂2 + V2(x)

) =
Ψ1(∞)

Ψ2(∞)
Ψi(ε) = 0, Ψ′

i(ε) = 1

Straight line:

det8/2 (AdS Fermi)

det8/2 (free Fermi)
=

∏
ω

 1+ 1
2εω

−2εω e−2εωEi(−2εω)

4

= e
4
ε ln(Λε)+...

det3/2 (AdS Bose)

det3/2 (free Bose)
=

∏
ω

(
1+

1

εω

)3
= e

3
ε ln(Λε)+...

det1/2 (longitudinal)

det (free Bose)
=

∏
ω

(
1+

1

εω
+

1

2ε2ω2

)
= e

1
ε ln(Λε)+... (12)

Z
(1)
AdS

Z
(1)
flat

= e(4−3−1)1ε ln(Λε)+...

Same results for the most singular part for the circle

– essential deviation from Kruczenski, Tirziu (2008)



Conclusion and Outlook
———————————–

• Douglas’ algorithm for constructing minimal surfaces can be
extended to AdS
– explicitly elaborated for circular loop

• reparametrization path integral accounts for semiclassical
fluctuations about the minimal surface at one loop
– same results as for IIB open superstring in AdS5 × S5

• reparametrization path integral may describe exact effective action
of IIB open superstring in AdS5 × S5 like in flat space

• the results are applicable to the Schwinger effect in N = 4 SYM
– shifting of the critical electric field at strong coupling

• another potential application: polygonal light-like Wilson loops
(= scattering amplitudes in N = 4 SYM)

• reparametrization path integral is crucial for consistency of off-shell
string both in flat and AdS space


