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Anderson localization

• electron transport in disordered solids

• wave propagation in a random medium

• quantum chaos

• recent progress: cold bosons in disordered optical traps
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Main effect in one dimension

• absence of continuous spectrum in the linear disordered problem

• no propagating waves

• all eigenmides of discrete spectrum are exponentially localized

• localization length depends decreases with disorder and depends on

energy (frequency)

• applicable to any wave system (lattice, PDE)
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Discrete Anderson model

i
dψn

dt
= Enψn+ψn+1+ψn−1

Here En is a ranadom on-site potential, we take En as independent ran-

dom variables distributed uniformly in the range −W/2< En <W/2

(usually we chose W = 4)

All eigenstates are exponentially localized |ψn| ∼ exp(−|n−n0|
λ )

space

lo
g
|ψ
|
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Nonlinear effects

• Bose-Einstein condensate is described by a nonlinear Gross-Pitaevskii

equation

• wave propagation in a nonlinear disordered medium

• disordered chains of nonlinear oscillators

Q: Does nonlinearity enhance or destroy localization?
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Optical experiments I
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Schwartz, Bartal, Fishman and Segev, Nature 446 (2007)
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Optical experiments II

Lahini, Avidan, Pozzi, Sorel, Morandotti, Christodoulides and Silberberg,

PRL 013906 (2008)
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Cold atoms experiments

Billy et al., Nature 453, 891 (2008)
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Basic model: DANSE

We study Discrete Anderson Nonlinear Schrödinger Equation

i
∂ψn

∂t
= Enψn+β| ψn |

2ψn+ψn+1+ψn−1

β characterizes nonlinearity

In the context of optical experiments: propagation direction plays a role

of time

i
∂En

∂z
= EnEn+β| En |

2
En+En+1+En−1
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Different Setups for Nonlinear Disordered Lattices

• Spreading Problem: seed an initially localized wavepacket in an in-

finite lattice and look how it spreads

• Weak Chaos Problem: consider a finite lattice and study properties

of chaos/regularity at small energy densities (work with S. Fishman,

not in this talk)

• Scattering problem: consider a finite lattice and study how the field

is transmitted/reflected by a random layer
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Spreading Problem

How an initially localized field | ψn(0) |2= δn,0 is spreading?

Note that ∑n| ψn(t) |
2 = 1 = const

We characterize this with the averaged squared width, i.e. the second

moment 〈(∆n)2〉= σ(t) = ∑n(n−〈n〉)2| ψn(t) |
2. The averaging over

disorder realizations was performed for the logarithm of this quantity, i.e.

for logσ.
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Wave packet spreading I
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β = 1,W = 2
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slope 0.31
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Analytical estimate

In the basis of linear localized modes, the evolution of the amplitudes Cm

of these modes is due to their nonlinear coupling,

iĊm = ωmCm+β∑Cm1Cm2Cm3

Assuming randomness of the phases, we can estimate the rate of ex-

citation of a newly involved mode as ∼| C |6∼ 1/(∆n)3. On the other

hand, excitation of a new mode is none other than diffusive spreading

of the field, thus d
dt(∆n)2 ∼ 1/(∆n)3. Solution of this equation yields

subdiffusive spreading

(∆n)2 ∝ t2/5

12



Basic question:

Does spreading persist at very large times?

Numerics suggests:

• Initial wavepacket spreads seemingly unboundedly

• Subdiffusion spreading with exponent ≈ 0.35

But to answer questions

• Does it last forever?

• Does it depend on the nonlinearity constant?

We need to

• Study very large lattices

• At very large times
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Arguments against spreading

• In course of spreading nonlinearity becomes weaker

• A Kolmogorov-Arnold-Moser regime is approached?

• But the number of degrees of freedom (effective dimension) grows

• Limit of small density, large number of degrees of freedom

Our approach: to establish scaling properties
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Scaling approach to spreading

Use Nonlinear Diffusion Equation as heuristic model

∂ρ
∂t

= D
∂
∂x

(

ρa∂ρ
∂x

)

, with

Z

ρdx= E

Self-similar solution

ρ(x, t) =
1

[D(t − t0)]1/(2+a)

(

E−
ax2

2(a+2)[D(t − t0)]2/(a+2)

)
1
a

yields subdiffusion

X =

√

2
2+a

a
Ea/(2+a)[D(t − t0)]

1/(2+a)
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One parameter scaling

Reformulate

X =

√

2
2+a

a
Ea/(2+a)(D(t − t0))

1/(2+a)

as scaling functions:

X
E
∼

(

t − t0
E2

)1/(2+a) 1
X

dt
dX

∼

(

E
X

)−a
a(w) =−

d log 1
X

dt
dX

d logw

where w = E/X is the characteristic density
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Spreading in a strongly nonlinear lattice

We modify a weakly nonlinear disordered Klein-Gordon lattice

H = ∑
k

p2
k +ω2

kq2
k

2
+

(qk+1−qk)
2

2
+β

(qk+1−qk)
4

4

to a strongly nonlinear lattice

H = ∑
k

p2
k +ω2

kq2
k

2
+

(qk+1−qk)
4

4

Nonlinearly coupled disordered linear oscillators, the total energy E is

the only parameter
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Strong compactness of the spreading field

Here ”Anderson modes” are one site oscillators -> no exponential tails,

numerics is efficient and the packet width is well-defined
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One can easily calculate propagation time ∆T ≈ dt
dX
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Spreading in a lattice of nonlinearly coupled linear

oscillators

H = ∑k
p2

k+ω2
kq2

k
2 +

(qk+1−qk)
4

4
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19



Verification of scaling

Rescale coordinates to achieve collapse on one curve
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Empirical fit for density-dependence of index: a(w)≈−0.3−1.5log10w
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Toy model: Ding-Dong lattice

This is a strongly nonlinear lattice that is easy to model numerically
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Ding-Dong model (Prosen, Robnik, 92) is a chain of linear oscillators with

elastic collisions
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Ding-Dong dynamics

Hamiltonian and collision condition

H =∑
k

p2
k +q2

k
2

when qk−qk+1= 1 then pk→ pk+1, pk+1→ pk

Effective calculation of the collision times – simulation on very long times

pissible

Strongly nonlinear lattice: no linear waves, no phonons, all propagating

perturbations are nonlinear
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Compactons in a homogeneous lattice
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Spreading in a homogeneous lattice

From random initial conditions: chaos, breathers, and (almost)compactons

appear
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Examples of chaos and breathers
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Spreading in a disordered lattice

Disorder in distances or masses destroys compactons

Spreading effectively stops: no spreading events for time interval 1010,

a few chaotic spots appear
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Chaotic spot
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Scattering problem

• a finite nonlinear disordered layer embedded in a linear regular envi-

ronment

• a regular incident wave

• what are transmission/reflection properties ?
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Scattering problem for an NSE

Discrete Anderson nonlinear Schrödinger equation:

i
∂ψn

∂t
= Enψn+β| ψn |

2ψn+ψn+1+ψn−1 1≤ n≤ L

β characterizes nonlinearity

energies En are independent random variables distributed uniformly in

the range −W/2< En<W/2 (we take W = 4 in this study)

Model boundary conditions:

ψ0 = 2A− iψ1 , ψL+1 = −iψL .

A is the amplitude of the incident wave (hereafter A = 1)
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Scattering problem as a dissipative dynamical system

System

i
∂ψn

∂t
= Enψn+β| ψn |

2ψn+ψn+1+ψn−1 1≤ n≤ L

ψ0 = 2− iψ1 , ψL+1 = −iψL .

is a dissipative forced nonlinear dynamical system with L degrees of

freedom

The problem is in finding attractors and characterizing their properties
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Linear scattering problem

i
∂ψn

∂t
= Enψn+ψn+1+ψn−1 1≤ n≤ L

ψ0 = 2− iψ1 , ψL+1 = −iψL .

This linear dissipative system

has a unique stable attractor –

an equilibrium point. This equi-

librium corresponds to an expo-

nentially localized field:

ψL ∝ exp[−L/λ]

20 40 60 80 100
n

-20
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-5

logÈΨnÈ
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n
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logÈΨnÈ
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Stability of the linear solution

For β = 0 the linear solution is

stable, however real parts of so-

me eigenvalues are very close to

zero

This is due to localized modes at

the middle of the lattice that are

weakly coupled to the ends
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 0
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Nonlinear continuation

The linear solution can be continued into β 6= 0, until it bifurcates

saddle-node/fold

bifurcation

||ψ||

β
βc

supercritical

Hopf bifurcation

||ψ||

β
βc

subcritical

Hopf bifurcation

||ψ||

β
βc
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Statistical bifurcation analysis
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Scaling of the critical nonlinearity
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The line is the power law µ(β) ≈ 9.2·L−1.6
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Long lattices: direct numerical simulations
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Conclusion

• Nonlinearity destroys Anderson localization

• Subdiffusive spreading of initially localized wave packets

width ∼ time0.17

• Linear regime of scattering on a nonlinear layer is destroyed via a

bifurcation at βc ∼ L−1.6,

leading to chaos-induced transparency

• Scaling approach based on a nonlinear diffusion equations captures

well the scaling of spreading in a strongly nonlinear lattice

• A toy strongly nonlinear lattice – Ding-Dong model – shows stop of

spreading, final state consists of a few chaotic spots + background
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