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Microemulsion of water droplets,
containing BZ reagents, In oll
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Variety of patterns in BZ-AOT microemulsion
(Vanag, 2004)
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Diffusion instability
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Turing instability in a two-variable

system
2
a—uzau+bv+D1 g u,
ot or
2
a—v:cu+dv+Dza—v
ot or?

Uniform state (0,0) becomes unstable, if

a) ad-bc >0,
b) a+d<0),
c) d<0,

d) a>0,

e) D2a + Dld > 2\/D1D2 (Cld — bC)
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Linear analysis of a three-variable

8_u = f(u,v,w)+ D;Au,
ot

VN (u,v,w)+ D,Av

8t g s Vo 2 ’
ow

o = h(u,v,w)+ D;Aw.

system
o - - —
a—:a11u+a12v+a13w+DlAu,
[
ov — - — -
<5=a21u+a22v+a23w+D2Av,
ow - - —
a—=a31u+a32v+a33w+D3Aw.
[

.

Borina , Polezhaev, 2011



Characteristic equation

a 1 —k2D1 _A a12 a13
azl 6122 _k2D2 —A Cl23 = O
a3 a3y ds3 —k2D3 —A
v

N —AN +BA-C=0

A=oc-k*(D,+D,+D,),
B=3%- kZ(D (a22+a33)+D (a,, +ay)+D,(a,, +a,))+k*(D.D, + D,D, + D,D,),
C=A-K

ZDG) +k*-(D,D,a,, + D,D,a,, + D,D,a,,)—K°D,D,D,,

i=1
o=a,+a, +a,, ZZZQ" ® =a,q,-a,q;, i# j#k,

P
A =a,(a,055 — A0y, ) — 41, (0y05 — Ay305,) + Q15(a,,05, — A a5).



Relations between coefficients of the cubic equation and its roots:
(A=A +Ay+A5,

B=AAy +AsA;+A A,

lC=AA,A,,

AB—C = (A + M)Ay + A3)(A; +As).

The examined state of the system is stable if for all eigenvalues of
characteristic equation ReA,(k*)<0, i=1,2,3.

Uniform state is stable if and only if

(4<0,
B >0,
C<O0,
AB - C<0.




Turing bifurcation

The function C(k*) has the form C(k?) = A — ak? + Bkt — &k°

3
i=1

For Turing instability to take place the following condition should be met
C

1 3
Croax (kg ) = A+ {2(ﬁ2 - 3a5)2 + ﬂ(Zﬂz - 9055)} >0, \

2752

where =%(ﬂ+\/ﬂ2 —30{5) \




The conditions for Turing instability
In the case 4,>0, D <<D,,D,

o<0, 2>0, A<O,
o-2—-A<0,
D,D, 27 (—A)
2 > 3 )
D, 4  a;




Wave instability

F(k*)=AB-C =02 -A—-ok* + fk* — &k°.

where
2 2 2 2 2 2
a=D|(0" —aj) —apay —apzas)+ Dy (07 —ay —appay —axasy)+ Dy (07 —aszs —ajzas; —andas),
B =(Dy +D;)(D, +Ds)ay +ay)+ (D) +D,) (D, +Ds)ay +az3)+ (D +D,) Dy +Ds)(ay, +asz),

0 =(Dy + D) (D, + D3 )(D; + D;)

For wave instability to take place the following condition should be met

3

F . (k)=c-T—A+ 27152 {2(,82 = 3a5)§ + ,3(2,32 - 90(5)} > ()

where  kZ =$(ﬂ+\/ﬁ2 —30{5)



The conditions for wave instability
in the case (aq,,+a,)>0, o<0, D,>D,D,

>0, A<O,
o-2—A<0,

2
D, +D, < 4 (a11+a22)3.
D, 27 (A—0o-2)
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Spatial-Temporal Patterns in a
Multidimensional Active Medium Caused by
Polymodal Interaction Near the Wave
Bifurcation
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A ; are complex amplitudes of modes corresponding to equal in length but
different in direction wave vectors becoming unstable due to the wave

bifurcation.
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Stationary states of (2)

1 1€l p,

J1+(p=Dh~ (3)
0, iep+1,N




Linear stability of a stationary state (3)

Equations (2) literalized near the point (3)

[ ) P _
S, = —54 —hY ' 84)), iel,p,
oo U ; ) P
< (4)
O, = d=r) oA, iep+1,N.
1+(p—-1Dh

Eigenvalues of the dispersion equation for the set (4)
—2(1+(p-Dh), k=1

A, =12(h-1), ke, p

1-h, kep+1,N




Theorem

If h € (1,00) then equations (1) have N stable stationary states such that only
one of the amplitudes 1s nonzero and its magnitude equals unity,
while all the others are zero.

If 1 €(0,1) then all the amplitudes are nonzero and have the same magnitudes
equal to 1/\/1+(N—1)h

All other stationary points are unstable for any 4.



The modified Gierer-Mainhardt model:
parametric analysis and numerical simulations

These equations have one stationary point:

2
X0=p+1, Yoz(p+1] , ZO=C('O+1)

H du



Parametric space of the model (5)

12.5 | T T T

10
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1.5 1.82 2.14 2.46 2.78 3.1

The Q, u plane. The domain corresponding to the wave instability is above the line.
Other parameters of the model: p=0.23, c=1, d=1, D, =1, D, =1, D; =50



Travelling waves (numerical simulations)

Parameters: p=0.23, u=2, Q=3, c=1, d=1, D, = 1, D, =1, D; =50.
Domain size: 150x150.



Travelling wave




Standing waves (numerical simulations)

Parameters: p=0.23, u=1.65, Q=10, c=1, d=1, D, = 1, D, =1, D, =50.
Domain size: 150x150.



Standing wave




Mechanism of Switching From Standing to
Traveling Waves

Accompanied by Halving of the Wavelength

IKaminaga A., Vanag V.K., Epstein I.R. Wavelength Halving in a Transition
between Standing Waves and Traveling Waves // Phys. Rev. Lett. v. 95, 2002.



Assumptions

e A standing wave Is excited by a supercritical wave
bifurcation for the wave with the wave vector kg,

”1 (7/', t) — Alei(WSWHkSW’”) 4 Azei(WSWt_kSW’”)

[ ~ ~ |~ 2 ~ |~ |2
A, :A1_(1_ic1)A1‘A1 _h1(l_icz)A1‘A2 ;

2

~ ~ ~ |~ |2 ~ |~
A, =4, —(—ic)A,|4,| —h (—ic,)4,|4]| .

.

hoe(l) [ 4, = 11}:
V 1




«A wave with a twofold wave number 2k
related to a standing wave is stable, but can be
excited In a rigid manner due to a subcritical

bifurcation.

I/lz(l", t) _ Blei(w2t+2kSWr) n Bzei(wzt—2kSWr)

In this case in the corresponding amplitude equations we
should take into account besides cubic terms also terms of the

fifth power.

2
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e There Is a resonance between the first and the
second waves, namely, the wave with a twofold
wave number has also a duplicated frequency.

ReAImA
20

[t K, 2, k



X i(wgpttkgyr) . T i(wept—keyr) | D iQweyt+2kgyr) . D iQRweyt—2kgyr)
u(r,t)=Ae + A,e +Be + B,e .

In terms of amplitude equations this resonance means that besides the
conventional cubic terms describing interaction between the modes
there is also a term, proportional to the square of the first mode
amplitude in the equation for the second mode.

r

% =A - A —hAJA - 5,(B’ +B;)A,
% = A, — A, — A 4, = 5,(B] + B)) 4,,
| dB
Ttl =—aB, + B} — BB} —h,B;B, — 5,(A} + 4;)B, + ccosy, ()4},
dB, 3 5 2 2 2 2
o =—aB, + B, — B —h,B; B, —0,(4; + 4))B, + ocosy,(t)A4;,

i B

and B, =

where A4 =



f(Bi) — _aBi + Bi3 — IBBiS

2 |B.+B’ - B’ +
1+h1j p

B)=— 2
g(B,) (a+ 1+h




Numerical experiments
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Space-time plot u(r,t) of the transition from
standing to travelling wave for h, >1-4af

experiment




Space-time plot u(r,t) of the transition from
standing to standing wave with half wavelength

for p, <1-4af
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Conclusion

e We have shown that though in multidimensional
space a lot of modes contribute to pattern
formation, In fact the variety of possible patterns
IS very limited: either there is a standing wave
with rather complicated spatial structure (all of
the modes survive) for low intermodal
competition, or there is a quasi one-dimensional
travelling wave for strong competition. In fact it
means that having just a snapshot of the pattern
we can immediately say whether we deal with a
standing or travelling wave.



e \We suggested a possible mechanism for a rather
nontrivial phenomenon observed In experiment:
the transition from standing waves to travelling
waves with the half-wavelength, based on the
hypothesis of a kind of resonance between the
unstable mode, responsible for the standing
wave, and the rigidly exited mode with a twofold
wave number. Though, from the point of view of
the theory of dynamical systems, this situation is
noncoarse, it is possible that due to the drift of
parameters in a real experimental system such

resonance may occur, resulting in the observed
transition.
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