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Talk outlineTalk outline
• Experimental background
• Diffusion instability
• Linear analysis of a three-variable system
• Spatial-temporal patterns in a multidimensional 

active medium caused by polymodal interaction 
near the wave bifurcation

• Mechanism of switching from standing to 
traveling waves accompanied by halving of the 
wavelength 

• Conclusion



MicroemulsionMicroemulsion of water dropletsof water droplets, , 
containing BZ reagentscontaining BZ reagents, , in oilin oil

= 2nm

1 μm  × 1 μm
Volume fraction of droplets ϕd = 0.3

(Vanag et al.)



Variety of patterns in BZVariety of patterns in BZ--AOT AOT microemulsionmicroemulsion
((VanagVanag, 2004), 2004)



Wave instability

kmax

dω/dk > 0

dω/dk < 0

Turing instability

Dispersion curves

Diffusion instabilityDiffusion instability
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Turing instability in a twoTuring instability in a two--variable variable 
systemsystem
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Linear analysis of a threeLinear analysis of a three--variable variable 
systemsystem
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Characteristic equationCharacteristic equation

0
k

k
k

3
2

333231

232
2

2221

13121
2

11

=
Λ−−

Λ−−
Λ−−

Daaa
aDaa
aaDa

023 =−Λ+Λ−Λ CBA

).()()(

,

,)(

),())()()((
),(

312232211331233321123223332211

3

1
332211

3

1
321

6
113222313321

42

323121
4

221133311233221
2

321
2

aaaaaaaaaaaaaaa

kjiaaaaaaa

DDDaDDaDDaDDDC

DDDDDDaaDaaDaaDB
DDDA

kjjkkkjji
i

i

i
ii

−+−−−=Δ

≠≠−=ΘΘ=Σ++=

−++⋅+Θ−Δ=

++++++++−Σ=
++−=

∑

∑

=

=

,  ,  ,

kkk

kk
k

σ

σ



⎪
⎪
⎩

⎪
⎪
⎨

⎧

Λ+ΛΛ+ΛΛ+Λ=−
ΛΛΛ=

ΛΛ+ΛΛ+ΛΛ=
Λ+Λ+Λ=

).)()((
,

,
,

313221

321

313221

321

CAB
C
B
A

Relations between coefficients of the cubic equation and its roots:

The examined state of the system is stable if for all eigenvalues of 
characteristic equation .3,2,1,0)(Re 2 =<Λ iki

Uniform state is stable if and only if
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The function has the form

where

Turing bifurcationTuring bifurcation

For Turing instability to take place the following condition should be met

( ) ( ) ,09232
27

1)( 22
3

2
2

2
0max >

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−+Δ= αδββαδβ
δ

kC

where ⎟
⎠
⎞⎜

⎝
⎛ −+= αδββ

δ
3

3
1 22

0k

. C

k



The conditions for Turing instability       The conditions for Turing instability       
in the casein the case 32111 ,,0 DDDa <<>
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where

Wave instabilityWave instability

For wave instability to take place the following condition should be met
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The conditions for wave instability        The conditions for wave instability        
in the casein the case 2132211 ,,0,0)( DDDaa >><>+ σ
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SpatialSpatial--Temporal Patterns in a Temporal Patterns in a 
Multidimensional Active Medium Caused by Multidimensional Active Medium Caused by 

PolymodalPolymodal Interaction Near the Wave Interaction Near the Wave 
BifurcationBifurcation
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jA~ are complex amplitudes of modes corresponding to equal in length but 
different in direction wave vectors becoming unstable due to the wave 
bifurcation.
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Stationary states of (2)Stationary states of (2)
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Linear stability of a stationary state (3)Linear stability of a stationary state (3)

Equations (2) literalized near the point (3) 
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Eigenvalues of the dispersion equation for the set (4)



TheoremTheorem

If ),1( ∞∈h then equations (1) have N stable stationary states such that only 
one of the amplitudes is nonzero and its magnitude equals unity,
while all the others are zero.

If )1,0(∈h then all the amplitudes are nonzero and have the same magnitudes
equal to hN )1(1/1 −+

All other stationary points are unstable for any h.



These equations have one stationary point:
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The modified The modified GiererGierer--MainhardtMainhardt model: model: 
parametric analysis and numerical simulationsparametric analysis and numerical simulations
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The Ω, μ plane. The domain corresponding to the wave instability is above the line.  
Other parameters of the model: ρ=0.23, c=1, d=1, D1 = 1, D2 =1, D3 =50

Parametric space of the model (5)Parametric space of the model (5)



Parameters: ρ=0.23, μ=2, Ω=3, c=1, d=1, D1 = 1, D2 =1, D3 =50.
Domain size: 150x150.

Travelling waves (numerical simulations)Travelling waves (numerical simulations)



Travelling wave




Parameters: ρ=0.23, μ=1.65, Ω=10, c=1, d=1, D1 = 1, D2 =1, D3 =50.
Domain size: 150x150.

Standing waves (numerical simulations)Standing waves (numerical simulations)



Standing wave




1Kaminaga A., Vanag V.K., Epstein I.R. Wavelength Halving in a Transition
between Standing Waves and Traveling Waves // Phys. Rev. Lett. v. 95, 2002.
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Mechanism of Switching From Standing to Mechanism of Switching From Standing to 
Traveling Waves Traveling Waves 

Accompanied by Halving of the WavelengthAccompanied by Halving of the Wavelength



Assumptions
• A standing wave is excited by a supercritical wave 
bifurcation for the wave with the wave vector SWk
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••A wave with a twofold wave number          A wave with a twofold wave number          
related to a standing wave is stable, but can be related to a standing wave is stable, but can be 
excited in a rigid manner due to a subcritical excited in a rigid manner due to a subcritical 
bifurcation.bifurcation.

SWk2
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In this case in the corresponding amplitude equations we 
should take into account besides cubic terms also terms of the 
fifth power.
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•• There is a resonance between the first and the There is a resonance between the first and the 
second waves, namely, the wave with a twofold second waves, namely, the wave with a twofold 
wave numberwave number has has also a duplicated frequency.also a duplicated frequency.
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In terms of amplitude equations this resonance means that besides the 
conventional cubic terms describing interaction between the modes 
there is also a term, proportional to the square of the first mode 
amplitude in the equation for the second mode.
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Numerical experimentsNumerical experiments



Space-time plot u(r,t) of the transition from 
standing to travelling wave for αβ412 −>h
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Space-time plot u(r,t) of the transition from 
standing to standing wave with half wavelength
for αβ412 −<h
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ConclusionConclusion
• We have shown that though in multidimensional 

space a lot of modes contribute to pattern 
formation, in fact the variety of possible patterns 
is very limited: either there is a standing wave 
with rather complicated spatial structure (all of 
the modes survive) for low intermodal 
competition, or there is a quasi one-dimensional 
travelling wave for strong competition. In fact it 
means that having just a snapshot of the pattern 
we can immediately say whether we deal with a 
standing or travelling wave. 



• We suggested a possible mechanism for a rather 
nontrivial phenomenon observed in experiment: 
the transition from standing waves to travelling 
waves with the half-wavelength, based on the 
hypothesis of a kind of resonance between the 
unstable mode, responsible for the standing 
wave, and the rigidly exited mode with a twofold
wave number. Though, from the point of view of 
the theory of dynamical systems, this situation is 
noncoarse, it is possible that due to the drift of 
parameters in a real experimental system such 
resonance may occur, resulting in the observed 
transition.
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