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Modern cosmological observations indicate that the current expansion
of the Universe is accelerating.

The simplest model able to reproduce this late-time cosmic accelera-
tion is general relativity with a cosmological constant.

There are a lot of different models of modified gravity (review 1).

1M. Kilbinger et al., Dark energy constraints and correlations with systematics
from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5, Astron. Astro-
phys. 497 (2009) 677–688 [arXiv:0810.5129]
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Nonlocal gravitational model
We consider model that include a function of the �−1 operator.
Action for nonlocal gravity

S =

∫
d4x

√
−g
{

1

2κ2

[
R
(
1 + f (�−1R)

)
− 2Λ

]
+ Lmatter

}
. (1)

Such modification does not assume the existence of a new dimensional
parameter in the action.
Here κ2 ≡ 8π/MPl

2,

the Planck mass being MPl = G−1/2 = 1.2× 1019 GeV,
g is the determinant of the metric tensor gµν,
f a differentiable function,
Λ is the cosmological constant,
Lmatter is the matter Lagrangian,
� is covariant d’Alembertian for a scalar field

� ≡ 1√
−g

∂µ
(√

−g gµν∂ν
)
.
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For FLRW geometry the d’Alembertian has the form:

� = −(∂2t + 3H∂t), where H =
ȧ

a
is the Hubble parameter

the its inverse operator (see 2) is :

�−1 = −
∫
0
dt′

1

a3(t′)

∫ t′

0
dt′′a3(t′′)

�−1R = −
∫
0
dt′

1

a3(t′)

∫ t′

0
dt′′a3(t′′)

[
12H2(t′′) + 6Ḣ2(t′′))

]
.

2N.C. Tsamis, R.P. Woodard, CCTP-2010-8, UFIFT-QG-10-04,
arXiv:1006.4834[gr-qc]
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This nonlocal model has a local scalar-tensor formulation.
Introducing two scalar fields, η and ξ, we rewrite action (1) in local form:

S =

∫
d4x

√
−g
{

1

2κ2
[R (1 + f (η)− ξ) + ξ�η − 2Λ] + Lmatter

}
.

(2)
By varying the action (2) over ξ, we get �η = R.

Substituting η = �−1R into action (2), one reobtains action (1).
Varying action (2) with respect to the metric tensor gµν, one gets

1

2
gµν

[
R (1 + f (η)− ξ)− ∂ρξ∂

ρη − 2Λ
]
−Rµν (1 + f (η)− ξ) + (3)

+
1

2

(
∂µξ∂νη + ∂µη∂νξ

)
−
(
gµν�−∇µ∂ν

)
(f (η)− ξ)+κ2Tmatterµν = 0,

where∇µ is the covariant derivative, Tmatterµν is the energy–momentum
tensor of matter.
Variation of action (2) with respect to η yields

�ξ + f ′(η)R = 0. (4)
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In the spatially flat FLRW metric,

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
(5)

the system of Eqs. (3) is equivalent to the following equations:

− 3H2 (1 + f (η)− ξ) +
1

2
ξ̇η̇− 3H

d

dt
(f (η)− ξ) +Λ+ κ2ρm = 0 , (6)

(2Ḣ+3H2)(1+f (η)−ξ)+1

2
ξ̇η̇+

(
d2

dt2
+ 2H

d

dt

)
(f (η)−ξ)−Λ+κ2Pm = 0.

(7)



Stability of de Sitter Solutions in Modified Gravity E. PozdeevaGinzburg Conference on Physics 2012 7

For a perfect matter fluid, we have Tmatter 00 = ρm, Tmatter ij = Pmgij.
The equation of state (EoS) is

ρ̇m = − 3H(Pm + ρm). (8)

Adding up Eqs. (6) and (7), we get

2Ḣ (1 + f (η)− ξ)+ ξ̇η̇+

(
d2

dt2
−H

d

dt

)
(f (η)− ξ)+κ2(Pm+ρm) = 0.

(9)
The equations of motion for the scalar fields η and ξ follow

η̈ + 3Hη̇ = − 6
(
Ḣ + 2H2

)
, (10)

ξ̈ + 3Hξ̇ = 6
(
Ḣ + 2H2

)
f ′(η) , (11)

where we have used R = 6Ḣ + 12H2.
The system of equations (8)–(11) together with (6) is equivalent to the

full system of Einstein’s equations.
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Nonlocal models with de Sitter solutions
Assuming that the Hubble parameter is a nonzero constant: H = H0

we obtain
η(t) = − 4H0(t− t0)− η0e

−3H0(t−t0),

t0, η0 are integration constants. Without loss of generality we set t0 = 0.
Considering wm ≡ Pm/ρm = const ̸= −1 we obtain from Eq. (8)

ρm = ρ0 e
−3(1+wm)H0t, (12)

where ρ0 is an arbitrary constant.
From Einstein equations we obtain linear differential equation to Ψ(t) =
f (η(t))− ξ(t):

Ψ̈ + 5H0Ψ̇ + 6H2
0(1 + Ψ)− 2Λ + κ2(wm − 1)ρm = 0, (13)
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Equation (13) has the following general solution:

• At ρ0 = 0,

Ψ1(t) = C1e
−3H0t + C2e

−2H0t − 1 +
Λ

3H2
0

, (14)

• At ρ0 ̸= 0 and wm = 0,

Ψ2(t) = C1e
−3H0t + C2e

−2H0t − 1 +
Λ

3H2
0

− κ2ρ0
H0

e−3H0tt, (15)

• At ρ0 ̸= 0 and wm = −1/3,

Ψ3(t) = C1e
−3H0t + C2e

−2H0t − 1 +
Λ

3H2
0

+
4κ2ρ0
3H0

e−2H0tt, (16)

• At ρ0 ̸= 0, wm ̸= 0 and wm ̸= −1/3,

Ψ4(t) = C1e
−3H0t+C2e

−2H0t−1+
Λ

3H2
0

−κ
2ρ0(wm − 1)e−3H0(wm+1)t

3H2
0wm(1 + 3wm)

.

(17)
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Substituting ξ(t) = f (η(t))− Ψ(t) into

�ξ + f ′(η)R = 0 (18)

we get linear differential equation to f (η) :

η̇2f ′′(η) +
(
η̈ + 3H0η̇ − 12H2

0

)
f ′(η) = Ψ̈ + 3H0Ψ̇ . (19)

Therefore, the model, which is described by action (2), can have de
Sitter solutions only if f (η) satisfies Eq. (19). In other words Eq. (19) is
a necessary condition that the model has de Sitter solutions. To prove
the existence of de Sitter solutions for the given f (η) one should also
check Eqs. (6) and (7).
To demonstrate how one can get f (η), which admits the existence of

de Sitter solutions, in the explicit form, we restrict ourselves to the case
η0 = 0. In this case, Eq. (19) has the following form:

16H2
0f

′′(η)− 24H2
0f

′(η) = Φ(η), (20)

where Φ(η) = Φ(−4H0t) ≡ Ψ̈ + 3H0Ψ̇.
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Substituting the explicit form of Ψ(t) to (19), we get

• For the model without matter (ρ0 = 0, Ψ(t) = Ψ1(t)),

f1(η) =
C2

4
eη/2 + C3e

3η/2 + C4. (21)

• For the model with the dark matter (wm = 0, Ψ(t) = Ψ2(t)),

f2(η) = f1(η)−
κ2ρ0

3H2
0

e3η/4. (22)

• For the model, including the matter with wm = −1/3 (Ψ(t) = Ψ3(t)),

f3(η) = f1(η) +
κ2ρ0

4H2
0

(
1− 1

3
η

)
eη/2. (23)

• For the model, including the matter with another value of wm (Ψ(t) =
Ψ4(t)),

f4(η) = f1(η)−
κ2ρ0

3(1 + 3wm)H2
0

e3(wm+1)η/4. (24)
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De Sitter solutions for exponential f (η)
One can see that the key ingredient of all functions fi(η) is an exponent
function. In the following we consider de Sitter solutions for the model
with

f (η) = f0e
η/β , (25)

where f0 and β are constant.

The model of exponential function f (η) is actively studied in
S. Nojiri and S.D. Odintsov, Phys. Lett. B 659 (2008) 821;
S. Jhingan, S. Nojiri, S.D. Odintsov, M. Sami, I. Thongkool, and S. Zerbini,
Phys. Lett. B 663 (2008) 424–428 ;
T.S. Koivisto, Phys. Rev. D 77 (2008) 123513;
S. Nojiri, S.D. Odintsov, M. Sasaki and Y.l. Zhang, Phys. Lett. B 696
(2011) 278–282;
Y.l. Zhang and M. Sasaki, Int. J. Mod. Phys. D 21 (2012) 1250006.
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De Sitter solutions play a very important role in cosmological models,
because both inflation and the late-time Universe acceleration can be
described as a de Sitter solution with perturbations. A few de Sitter
solutions for this model have been found in 3 and also analyzed in 4.
We generalize de Sitter solutions from K. Bamba, Sh. Nojiri, S.D.

Odintsov, and M. Sasaki, YITP-11-46, arXiv:1104.2692 without any re-
striction on parameters.

3 S. Nojiri and S.D. Odintsov, Phys. Lett. B 659 (2008) 821
4 K. Bamba, Sh. Nojiri, S.D. Odintsov, and M. Sasaki, Screening of cosmological

constant for De Sitter Universe in non-local gravity, phantom-divide crossing and
finite-time future singularities, YITP-11-46, arXiv:1104.2692
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For β ̸= 4/3, from (10) and (11) the following solution is obtained:

ξ = − 3f0β

3β − 4
e−4H0(t−t0)/β +

c0
3H0

e−3H0(t−t0) − ξ0, (26)

η = − 4H0(t− t0), c0 is an arbitrary constant,

Λ = 3H2
0(1+ξ0), ρ0 =

6 (β − 2)H2
0f0

κ2β
, wm = −1+

4

3β
. (27)

For β = 4/3, we get

ξ(t) = − f0(c0 + 3H0(t− t0))e
−3H0(t−t0) − ξ0, (28)

Λ = 3H2
0(1+ ξ0), Pm = 0, ρm = − 3

κ2
H2
0f0e

−3H0(t−t0). (29)

This solution clearly corresponds to dark matter, because wm = 0.
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Stability of the de Sitter background
The case of nonzero Λ, the FLRW metric
Let us now introduce new variables

ϕ = f (η) = f0e
η/β, ψ = η̇, ϑ̇ = ξ. (30)

The functions ϕ(t) and ψ(t) are connected by the equation

ϕ̇ =
1

β
ϕψ. (31)

Consider the de Sitter solution

ρm = ρ0e
−3(wm+1)H0(t−t0), Pm = wmρm, Λ = 3H2

0(1 + ξ0),

β =
4

3(1 + wm)
, ψ = − 4H0, ϕ = f0e

−4H0t/β. (32)
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For β ̸= 4/3, we have

ξ = − 3f0β

3β − 4
e−4H0(t−t0)/β +

c0
3H0

e−3H0(t−t0) − ξ0,

and, for β = 4/3,

ξ = − f0(c0 + 3H0(t− t0))e
−3H0(t−t0) − ξ0.

As t tends to +∞,

ρm → 0, ϕ→ 0, ψ = − 4H0, ξ → − ξ0, (33)

for all H0 > 0 and β > 0. This system has a fixed point:

ϕ = 0, ξ = − ξ0, ψ = − 4H0, ρm = 0.
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In the neighborhood of the fixed point, which corresponds to de Sitter
solution, we have

H(t) = H0 + εh1(t) +O(ε2),

ϕ(t) = εϕ1(t) +O(ε2),

ψ(t) = − 4H0 + εψ1(t) +O(ε2),

ξ(t) = − ξ0 + εξ1(t) +O(ε2),

ϑ(t) = εϑ1(t) +O(ε2),

ρm(t) = ερm1(t) +O(ε2),

where ε is a small parameter.
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From system of Einstein’s equations we obtain the following:

ρ̇m1 = − 4

β
H0ρm1, (34)

ϕ̇1 = − 4

β
H0ϕ1, (35)

ϑ̇1 = − 3H0ϑ1 +
12

β
H2
0ϕ1, (36)

ḣ1 =
2

(1 + ξ0)

[
2

β

(
1− 2

β

)
H2
0ϕ1 −

κ2

3β
ρm1

]
, (37)

ψ̇1 = − 3H0ψ1 − 12H0h1 −
12

(1 + ξ0)

[
2

β

(
1− 2

β

)
H2
0ϕ1 −

κ2

3β
ρm1

]
.

(38)

Note that the function ξ1 is not included in this system. It can be
defined using Eq. (6). It is plain that ξ1 cannot tend to infinity, if all
other first-order corrections are bounded.
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Let us now consider the system (34)–(38). The functions

ρm1(t) = d0e
−4H0t/β, ϕ1(t) = d1e

−4H0t/β, (39)

where d0, d1 are arbitrary constants, are general solutions to (34), (35),
respectively. Substitute these functions into the other equations:

h1(t) = d2 −
6H2

0d1(β − 2)− κ2d0β

6βH0(1 + ξ0)
e−4H0t/β, (40)

ϑ1(t) = 12
H0d1
3β − 4

e−4H0t/β + d3e
−3H0t, (41)

ψ1(t) =
2(β − 2)(6H2

0βd1 − 12H2
0d1 − κ2βd0)

H0β(3β − 4)(1 + ξ0)
e−4H0t/β+d4e

−3H0t−4d2,

(42)
where d2, d3, and d4 are arbitrary constants. The two last expressions
are valid for β ̸= 4/3.
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For β = 4/3,

ϑ1 =
(
9H2

0d1t + d3

)
e−3H0t,

ψ1 =

(
(3H2

0d1 + κ2d0)t

1 + ξ0
+ d4

)
e−3H0t − 4d2.

We see that none of the perturbations tends to infinity at t → ∞ at
β > 0 and H0 > 0.
Thus, for H0 > 0 and β > 0, the de Sitter solutions are stable with

respect to fluctuations of the initial conditions in the FLRW metric at
any nonzero value of Λ.
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The case of nonzero Λ, the Bianchi I metric
The Bianchi universe models are spatially homogeneous anisotropic

cosmological models. Interpreting the solutions of the Friedmann equa-
tions as isotropic solutions in the Bianchi I metric, we include anisotropic
perturbations in our consideration. The stability analysis is essentially
simplified by a suitable choice of variables. Let us consider the Bianchi
I metric

ds2 = − dt2 + a21(t)dx
2
1 + a22(t)dx

2
2 + a23(t)dx

2
3. (43)

ai(t) = a(t)eβi(t). (44)
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Imposing the constraint β1(t) + β2(t) + β3(t) = 0, at any t, one has
the following relations

a(t) = [a1(t)a2(t)a3(t)]
1/3 , Hi ≡

ȧi
ai

= H + β̇i, (45)

H ≡ ȧ

a
=

1

3
(H1 +H2 +H3). (46)

In the case of the FLRW spatially flat metric we have a1 = a2 = a3 = a,
all βi = 0, and H is the Hubble parameter. We introduce the shear

σ2 ≡ β̇21 + β̇22 + β̇23. (47)

In the Bianchi I metric R = 12H2 + 6Ḣ + σ2.
The field and Einstein equations system for the Bianchi I metric has a

fixed point, corresponding to the de Sitter solution:

ϕ = 0, ξ = − ξ0, ψ = − 4H0, ρm = 0, σ2 = 0.
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In the neighborhood of the fixed point we have

H(t) = H0 + εh1(t) +O(ε2),

ϕ(t) = εϕ1(t) +O(ε2),

ψ(t) = − 4H0 + εψ1(t) +O(ε2),

ξ(t) = − ξ0 + εξ1(t) +O(ε2),

ϑ(t) = εϑ1(t) +O(ε2),

ρm(t) = ερm1(t) +O(ε2),

σ2(t) = εσ21(t) +O(ε2)

where ε is a small parameter.
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From fields and Einstein equations we obtain σ21 = d5e
−6H0t,

h1 = d2 −
6H2

0d1(β − 2)− κ2d0β

6βH0(1 + ξ0)
e−4H0t/β +

d5
12H0

e−6H0t, (48)

ρm1(t) = d0e
−4H0t/β, ϕ1(t) = d1e

−4H0t/β, (49)

ϑ1(t) = 12
H0d1
3β − 4

e−4H0t/β + d3e
−3H0t. (50)

ψ1 =
2(β − 2)(6H2

0βd1 − 12H2
0d1 − κ2βd0)e

−4H0t
β

H0β(3β − 4)(1 + ξ0)
+ d4e

−3H0t −

− 4d2 −
d5e

−6H0t

3H0
, β ̸= 4/3 (51)

ψ1 =

((
3H2

0d1 + κ2d0
)
t

1 + ξ0
+ d4

)
e−3H0t−4d2−

d5
3H0

e−6H0t, β = 4/3



Stability of de Sitter Solutions in Modified Gravity E. PozdeevaGinzburg Conference on Physics 2012 25

Thus, for H0 > 0 and β > 0, the de Sitter solutions are stable with
respect to fluctuations of the initial conditions in the Bianchi I metric at
any nonzero value of Λ.
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The stability of de Sitter solutions with respect to fluctu-
ations of the initial conditions in the Bianchi I metric, in
the case Λ = 0.
To analyze the stability of the de Sitter solutions at Λ = 0, we have

considered the system of equations using the Hubble-normalized vari-
ables

X = − η̇

4H
, W =

ξ̇

6Hf
, Y =

1− ξ

3f
, Z =

κ2ρm
3H2f

, K =
σ2

2H2

and the independent variable, N ,

d

dN
≡ a

d

da
=

1

H

d

dt
.

The use of these variables makes the equation of motion dimensionless.
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Field and Einstein equations in terms of the new variables have the
fixed point

H = H0, X0 = 1, Z0 =
2(β − 2)

β
, W0 =

2

3β − 4
, K0 = 0,

which corresponds to de Sitter solution for β ̸= 4/3, with c0 = 0. In the
case of an arbitrary c0, for the de Sitter solution, we get

W =
2

3β − 4
− c0

6H0f0
e−(3−4/β)(N−N0),

where N0 = H0t0. The function W tends to infinity at large N for
β < 4/3 and lim

N→∞
W = W0 at β > 4/3.

So, the fixed point can be stable only at β > 4/3.
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The consideration of perturbations in the neighborhood of the fixed
point shows that the perturbations decrease at 4/3 < β 6 2 at H0 > 0.
Thus, the de Sitter solutions are stable with respect to perturbations of
the Bianchi I metric, in the case 4/3 < β 6 2 at H0 > 0.



Stability of de Sitter Solutions in Modified Gravity E. PozdeevaGinzburg Conference on Physics 2012 29

Conclusion

• A nonlocal gravity model with a function f (�−1R) has been consid-
ered and it has been proved that this model has de Sitter solutions
only if the function f satisfies the second-order linear differential equa-
tion (19).

• The de Sitter solutions have been obtained in the most general form
and their stability in the FLRW and Bianchi I metric has been anal-
ysed.

• The de Sitter solution is stable both for Λ > 0, and for Λ < 0. So,
it is possible that the cosmological constant is negative, but due to
nonlocality we get stable de Sitter solution at H0 > 0.

• The stability conditions in the cases of the FLRW and Bianchi I
metrics coincide.


