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dynamics of a single M5 brane

inspiration from M2 branes

motivation:  superconformal models in six dimensions
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goal : non-abelian extension of the (2,0) field equations

non-dynamical fields may be crucial  (BLG)
full supersymmetry may not be manifest  (ABJM)

study (1,0) non-abelian superconformal models in six dimensions

(dB)− = 0

[Bagger, Lambert, Gustavsson ’07]
[Aharony, Bergman, Jafferis, Maldacena, ’08]

{
Bµν , χi, φij

}
(2,0) chiral tensor multiplet in six dimensions

multiple branes: non-abelian deformation
various no-go theorems



plan
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nonabelian tensor fields in six dimensions

non-abelian tensor hierarchy
parameters and constraints

supersymmetry: superconformal field equations

(1,0) supersymmetry and dynamics
action (?!)

  conclusions / outlook

examples
solving the constraints
gauge groups and representation content



nonabelian tensor fields in six dimensions

Henning Samtleben                                                                                  ENS Lyon



Henning Samtleben                                                                                  ENS Lyon

nonabelian tensor fields in six dimensions

field content {Ar
µ, BI

µν , Cµνρ r}



Henning Samtleben                                                                                  ENS Lyon

nonabelian tensor fields in six dimensions

field content {Ar
µ, BI

µν , Cµνρ r}

covariant field strengths  (Yang-Mills)

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

non-abelian gauge transformations

δAr
µ = DµΛr − hr

IΛ
I
µ

and gauge generators Xrwith structure constantsdI
rs, bIrs, frs

t, gIr, hr
I



nonabelian tensor fields in six dimensions

Henning Samtleben                                                                                  ENS Lyon

field content {Ar
µ, BI

µν , Cµνρ r} tensor hierarchies
[B de Wit, HS, ’05]
[B de Wit, H Nicolai, HS, ’08]
[J. Hartong, T. Ortin, ’09]

non-abelian gauge transformations

covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

δAr
µ = DµΛr − hr

IΛ
I
µ

∆BI
µν = 2D[µΛI

ν] − 2 dI
rsΛ

rFs
µν − gIrΛµν r

∆Cµνρ r = 3D[µΛνρ] r + 3 bIrs Fs
[µν ΛI

ρ] + bIrsHI
µνρ Λs + . . .

∆BI
µν ≡ δBI

µν − 2dI
rs Ar

[µ δAs
ν]

∆Cµνρ r ≡ δCµνρ r − 3 bIrs BI
[µν δAs

ρ] − 2 bIrs dI
pq As

[µ Ap
ν δAq

ρ]

and gauge generatorsin terms of constant tensors dI
rs, bIrs, frs

t, gIr, hr
I Xr
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covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

(Xr)s
t = − frs

t + dI
rs ht

I

(Xr)I
J = 2 hs

Id
J
rs − gJsbIsr

gauge group generators

must close into the algebra [Xr, Xs] = (Xr)s
t Xt

charged tensor fields require Stückelberg-type coupling

generalized Bianchi identities                          , etc.

continues to 4-forms, 5-forms, ...

DFr = hr
I HI

Dµ = ∂µ −Ar
µ Xr

consistency requires several constraints on the parameters dI
rs, bIrs, frs

t, gIr, hr
I
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2 (dJ
r(udI

v)s − dI
rsd

J
uv)hs

J = 2fr(u
sdI

v)s − bJsrd
J
uv gIs

(dJ
rs bIut + dJ

rt bIsu + 2 dK
rubKstδ

J
I ) hu

J = frs
ubIut + frt

ubIsu + gJubIurbJst

f[pq
ufr]u

s − 1
3hs

I dI
u[pfqr]

u = 0

hr
Ig

Is = 0

frs
thr

I − dJ
rs ht

Jhr
I = 0

gJshr
KbIsr − 2hs

Ih
r
K dJ

rs = 0

−frt
sgIt + dJ

rt hs
JgIt − gItgJs bJtr = 0

covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

consistency requires several constraints on the parameters dI
rs, bIrs, frs

t, gIr, hr
I
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hr
Ig

Is = 0

frs
thr

I − dJ
rs ht

Jhr
I = 0

orthogonality

nonabelian tensor fields in six dimensions

2 (dJ
r(udI

v)s − dI
rsd

J
uv)hs

J = 2fr(u
sdI

v)s − bJsrd
J
uv gIs

(dJ
rs bIut + dJ

rt bIsu + 2 dK
rubKstδ

J
I ) hu

J = frs
ubIut + frt

ubIsu + gJubIurbJst

f[pq
ufr]u

s − 1
3hs

I dI
u[pfqr]

u = 0

gJshr
KbIsr − 2hs

Ih
r
K dJ

rs = 0

−frt
sgIt + dJ

rt hs
JgIt − gItgJs bJtr = 0

covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

consistency requires several constraints on the parameters 

violation of Jacobi identities

too many constraints ?  are there solutions ?

dI
rs, bIrs, frs

t, gIr, hr
I
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2 (dJ
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J
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J = 2fr(u
sdI

v)s − bJsrd
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(dJ
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f[pq
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3hs

I dI
u[pfqr]

u = 0
hr

Ig
Is = 0

frs
thr

I − dJ
rs ht

Jhr
I = 0

gJshr
KbIsr − 2hs

Ih
r
K dJ

rs = 0
−frt

sgIt + dJ
rt hs

JgIt − gItgJs bJtr = 0

covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

consistency requires several constraints on the parameters 

example :  Yang-Mills with neutral tensor fields

gIr = 0, hr
I = 0, dI

rs = dIηrs no Stückelberg-type couplings
[E. Bergshoeff, E. Sezgin, E. Sokatchev, ’96]

dI
rs, bIrs, frs

t, gIr, hr
I
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rt hs
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covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

consistency requires several constraints on the parameters 

example :  Yang-Mills with adjoint tensor fields

hr
s = 0, grs = ηrs, bt rs = frst coupling of three-forms, charged tensors

dI
rs, bIrs, frs

t, gIr, hr
I



supersymmetry: superconformal field equations
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result : every consistent bosonic system can be 
supersymmetrized !
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(1,0) supermultiplets
{
Ar

µ, λr
i , Y r

ij

} {
Cµνρ r

}
vector tensor three-form

{
BI

µν , χI
i , φ

I
}

off-shell on-shell ??



superconformal field equations
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{
Cµνρ r

}
(1,0) supermultiplets

{
Ar

µ, λr
i , Y r

ij

}
vector tensor three-form

closure of the supersymmetry algebra on the tensor multiplet impliesresulting tensor multiplet field equations are given by

HI −
µνρ = −dI

rsλ̄
rγµνρλ

s ,

γσDσχ
iI = 1

2d
I
rsF r

στ γστλis + 2dI
rsY

ij r λs
j +

(
dI

rsh
s
J − 2bJsrg

Is
)
φJλir ,

DµDµ φI = −1
2d

I
rs

(
F r

µνFµν s − 4 Y r
ijY

ij s + 8λ̄rγµDµλ
s
)

− 2
(
bJsrg

Is − 8dI
rsh

s
J

)
λ̄rχJ − 3 dI

rsh
r
Jhs

K φJφK . (3.5)

The first equation, which imposes a self duality condition on the three-from field

strength, originates in the closure of supersymmetry on the associated two-form poten-

tial BI
µν . The closure on δχi I gives the fermionic equations of motion while the scalar

field equation is obtained by the supersymmetry transformation of the χiI- equation.

The fact that the tensor fields are charged under the gauge group has rather non-

trivial consequences, namely supersymmetry variation of the field equations (3.5) in

turn implies the following first-order equations of motion for the Yang-Mills multiplets

gKrbIrs

(
Y s

ij φI − 2λ̄s
(iχ

I
j)

)
= 0 ,

gKrbIrs

(
F s

µνφ
I − 2 λ̄sγµνχ

I
)

= 1
4! εµνλρστ gKrH(4) λρστ

r ,

gKrbIrs

(
φIγµDµλ

s
i + 1

2γ
µλs

iDµφ
I
)

= gKrbIrs

(
1
4F

s
µνγ

µνχI
i + 1

24H
I
µνργ

µνρλs
i − Y s

ij χj I

+ 3
2h

s
JφIχJ

i + 1
3d

I
uv γµλu

i λ̄
sγµλ

v
)

.

(3.6)

The first equation is the algebraic equation for the auxiliary field Y ij r, while the second

equation provides the anticipated duality of vector fields and three-form potentials by

relating their respective field strengths. In particular, derivation of this equation and

use of the Bianchi identity (2.9) gives rise to a standard second-order equation of Yang-

Mills type for the vector fields Ar
µ . Equivalently, the first two equations of (3.6) can be

inferred from closure of the supersymmetry algebra on the three-form gauge potentials

gKrCµνρ r . The appearance of the Yang-Mills dynamics (3.6) from supersymmetry of

the tensor field equations (3.5) is in strong contrast to the model of [13] (in which

effectively gKr = 0, and the tensor field are not charged) where the vector fields remain

entirely off-shell or can alternatively be set on-shell with field equations that do not

contain the tensor multiplet fields. Moreover, in the model of [13], an algebraic equation

analogous to the first equation of (3.6) is excluded by the appearance of an anomaly

in its supersymmetry variation (see also [33]). We should stress that in the present

model, such anomalies are actually absent due to the particular Fierz identities (A.6),

(A.7) in combination with the identity (2.15). I.e. the quartic fermion terms in the

supersymmetry variation of (3.6) cancel precisely, which yields a strong consistency

check of the construction.

To summarize, the system of equations of motion (3.5), (3.6) consistently trans-

forms into itself under supersymmetry. It describes a novel system of supersymmetric
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tensor multiplet is on-shell: Yukawa couplings, (cubic) scalar potential

{
BI

µν , χI
i , φ

I
}

supersymmetry of these equations implies

non-abelian couplings for multiple (1, 0) tensor multiplets in six dimensions. The equa-

tions of motion contain no dimensionful parameter and hence the system is at least

classically (super)-conformal. A crucial ingredient to the model are the three-form

gauge potentials Cµνρ r which are related by first-order duality equations to the vector

fields of the theory and thus do not constitute new dynamical degrees of freedom. This

is similar to the situation of Chern-Simons matter theories in the context of multiple

M2 branes [5], [3]. The actual model depends on the explicit choice of the gauge group

and representations and the associated invariant tensors of the gauge group which have

to satisfy the conditions (2.4)–(2.6). The task that remains is to find explicit solutions

for these constraints. We will discuss different examples in sections 3.6, 4.4 and 4.5

below.

3.3 Extended model

The above described model represents the minimal field content and equations of mo-

tion, required for closure of the supersymmetry algebra and the supersymmetry of the

equations of motions. In particular, it relies on the projected subset gK rCµνρ r of three-

form gauge potentials. Just as for the bosonic tensor hierarchy in section 2.2, one may

seek to extend the above supersymmetric system to the full set of three-form gauge

potentials. With the supersymmetry transformation of general Cµνρ r given by (3.4),

closure of the supersymmetry algebra leads to the following uncontracted equations

bIrs

(
Y s

ij φI − 2λ̄s
(iχ

I
j)

)
= 0 ,

bIrs

(
F s

µνφ
I − 2 λ̄sγµνχ

I
)

= 1
4! εµνλρστ H(4) λρστ

r ,

bIrs

(
φIγµDµλ

s
i + 1

2γ
µλs

iDµφ
I
)

= bIrs

(
1
4F

s
µνγ

µνχI
i + 1

24H
I
µνργ

µνρλs
i − Y s

ij χj I +

+ hs
J

(
2φIχJ

i − 1
2φ

JχI
i

)
+ 1

3d
I
uv γµλu

i λ̄
sγµλ

v
)

,

(3.7)

In order to have this system close under supersymmetry it is necessary to introduce also

a four-form gauge potential. Consequently the tensor hierarchy has to be continued one

step further as described in section 2.2. The resulting supersymmetry transformation

of the four-form potential is

∆C(4)
µνρσ α = 2cα IJ φ[I ε̄γµνρσχ

J ] , (3.8)

Furthermore, supersymmetry of the field equations (3.7) induces the first-order field

equations

1
5! εµνρλστ kr

αH(5) µνρλσ
α = 2kr

α
(
cα IJ

(
φIDµφ

J − 2χ̄Iγµχ
J
)
− ct

α ubJtv λ̄uγµλ
v
)

. (3.9)

This shows that the dynamics of C(4)
µνρσ α is given by a first-order duality equations,

which relates these four-form potentials to the Noether current of some underlying

global symmetry. In particular, this first-order equation ensures that the four-form

gauge potentials do not constitute new dynamical degrees of freedom.
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= bIrs

(
1
4F

s
µνγ

µνχI
i + 1

24H
I
µνργ

µνρλs
i − Y s

ij χj I +

+ hs
J

(
2φIχJ

i − 1
2φ

JχI
i

)
+ 1

3d
I
uv γµλu

i λ̄
sγµλ

v
)

,

(3.7)

In order to have this system close under supersymmetry it is necessary to introduce also

a four-form gauge potential. Consequently the tensor hierarchy has to be continued one

step further as described in section 2.2. The resulting supersymmetry transformation

of the four-form potential is

∆C(4)
µνρσ α = 2cα IJ φ[I ε̄γµνρσχ

J ] , (3.8)

Furthermore, supersymmetry of the field equations (3.7) induces the first-order field

equations

1
5! εµνρλστ kr

αH(5) µνρλσ
α = 2kr

α
(
cα IJ

(
φIDµφ

J − 2χ̄Iγµχ
J
)
− ct

α ubJtv λ̄uγµλ
v
)

. (3.9)

This shows that the dynamics of C(4)
µνρσ α is given by a first-order duality equations,

which relates these four-form potentials to the Noether current of some underlying

global symmetry. In particular, this first-order equation ensures that the four-form

gauge potentials do not constitute new dynamical degrees of freedom.
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vector multiplet (partially) on-shell:  three-forms are dual to vectors Krs ≡ bI rs φI
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can these equations be lifted to an action ?

yes! provided that there is a constant metric
and the parameters are related as

ηIJ

hr
I = ηIJgJr , 2 dI

rs = ηIJbJrs

i.e. in particular a b-symbol that is symmetric in its indices (rs). Moreover, in the

process of computing the action, one finds that the identity (2.15) needs to be imposed

in order to ensure the existence of a proper topological term. From (4.1) it is obvious

that the models we have discussed in section 3.6 indeed do not admit an action.

To summarize, with these identifications, the algebraic consistency conditions (2.5),

(2.6), (2.15) reduce to

bI r(ub
I
vs) = 0 ,

(
bJ
r(u bI

v)s − bJ
uv bI

rs + bK rsb
K
uv ηIJ

)
gs

J = 2fr(u
sbI

v)s ,

6f[pq
ufr]u

s − gs
I bI

u[pfqr]
u = 0 ,

2frs
tgr

I − bJ
rs gt

Jgr
I = 0 ,

gr
Kgs

[IbJ ]sr = 0 ,

gr
Ig

Is = 0 . (4.2)

Finding non-trivial solutions to these constraints is a formidable task. We will give in

sections 4.4, 4.5 below some explicit solutions that are inspired from similar construc-

tions in gauged supergravity theories.

4.2 The action

In case the constant tensors satisfy all algebraic conditions (4.2), the equations of

motion (3.5), (3.6) can be lifted to an action. In fact, one may verify a somewhat

stronger conclusion: the identifications (4.1) and thus the set of constraints (4.2) appear

already to be necessary in order to construct a conserved supercurrent underlying the

equations of motion (3.5), (3.6) from a canonical structure for the fermions [37].

In order to write an action, we ignore for the moment the subtleties of writing an

action for a self-dual three-form field strength, but give a standard second-order action,

keeping in mind that the corresponding first-order equation of (3.5) is supposed to be

imposed after having derived the second-order equations of motion, just as in the

democratic formulation of ten-dimensional supergravities [22].3 The full action then

reads

L = −1
8D

µφI Dµφ
I − 1

2 χ̄I γµDµχ
I + 1

16bIrsφ
I
(
F r

µνFµν s − 4Y r
ijY

ij s + 8λ̄rγµDµλ
s
)

− 1
96H

I
µνρH

µνρ
I − 1

48bIrsHI
µνρ λ̄rγµνρλs − 1

4bIrsF r
µν λ̄sγµνχI + bIrsY

r
ij λ̄i sχj I

+ 1
2 (bJsrg

s
I − 4bIsrg

s
J) φI λ̄rχJ + 1

8bIrsg
r
Jgs

K φIφJφK − 1
48Ltop

− 1
24bIrsb

I
uv λ̄rγµλuλ̄sγµλ

v , (4.3)

which shows explicitly the role of the scalar fields φI as inverse coupling constants for

the Yang-Mills multiplet. Like the equations of motion, this action contains no dimen-

sionful parameter such that the system is (super)-conformal at least at the classical

3 Alternatively, this self-duality can be implemented by using a non-abelian version [38] of the
Henneaux-Teitelboim action [39] that breaks manifest space-time covariance.
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level. The topological term is given by integrating

dV δLtop = 6
{
bIrs δAr∧F s∧HI −∆BI∧

(
gr

I H(4) − 1
2bIrsF r∧F s

)
− gr

I∆Cr∧HI
}

,(4.4)

and has the explicit form

dV Ltop = −6 gr
I Cr∧HI + bIrsB

I∧F r∧F s − bIrsh
r
Jhs

K BI∧BJ∧BK

+ BI∧
[
hs

Ib
J
subJvrA

u∧Av∧ dAr + 3
4(bIrsfpq

r + 4bJqsXp I
J) fuv

sAp∧Aq∧Au∧Av
]

− 1
10 fup

sbJ
qsbJvr Ap∧Aq∧Au∧Av∧ dAr . (4.5)

It can be understood in compact form as the boundary contribution of a manifestly

gauge-invariant seven-dimensional term
∫

∂M7

Ltop ∝
∫

M7

(
bIrsF r∧F s∧HI −HI∧DHI

)
. (4.6)

As usual, gauge invariance of the topological term may lead to quantization conditions

for the various coupling constants. For the tensor multiplet, it is straightforward to

verify that the action (4.3) induces the field equations (3.5) from above. For the fields

of the vector multiplet, we obtain the first and the last of the uncontracted equations

(3.7), while the duality equation relating F r
µν and H(4)

µνρσ r only appears in its contracted

form (3.6). In addition, variation w.r.t. the vector field gives rise to the Yang-Mills

equation

bIrs Dν
(
φIF s

µν − 2λ̄sγµνχ
I
)

=
(
φIDµφ

J − 2χ̄Iγµχ
J
)
Xr IJ − 2φIbIpqXrs

q λ̄pγµλ
s

− 1
12bIrs εµνρλστ Fνρ sHλστ I , (4.7)

that can alternatively obtained as a derivative of the uncontracted duality equation

(3.7) upon use of the first-order equation (3.9).

We note that the last constraint equation of (4.2) shows that non-trivial solutions

to these constraints (i.e. solutions in which the tensor fields are charged) exist only

if the metric ηIJ is indefinite, which in turn implies that some of the scalars (and

some of the two-forms) in (4.3) have a negative kinetic term. This somewhat reminds

the situation for the three-dimensional BLG theories [3, 4] with Lorentzian three-

algebra [40, 41, 42, 43, 44], and certainly requires further investigation. We also note

that similar structures as encountered in this section have appeared in generic 6d

supergravity theories [45, 46, 47]

4.3 Multiplet structure of excitations

The supersymmetry transformations of the model (4.3) are still given by equations (3.3),

(3.4), such that the Killing spinor equations remain of the form (3.13). In particular,

the existence of a maximally supersymmetric vacuum is still encoded in the condition

(3.14) on the scalar expectation values. In this vacuum, the linearized field equations

18

Yukawa couplings, topological term :

indefinite metrics (ghosts) : gIrηIJ gJs ≡ 0 Krs ≡ bI rs φI

cubic scalar potential (superconformal), indefinite

missing gauge symmetry..?  (cf. Lorentzian 3-algebras)
missing constraints..?

modulo the standard subtleties for self-dual forms (HT, PST, “democratic”)
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2 (dJ
r(udI

v)s − dI
rsd

J
uv)hs

J = 2fr(u
sdI

v)s − bJsrd
J
uv gIs

(dJ
rs bIut + dJ

rt bIsu + 2 dK
rubKstδ

J
I ) hu

J = frs
ubIut + frt

ubIsu + gJubIurbJst

f[pq
ufr]u

s − 1
3hs

I dI
u[pfqr]

u = 0

hr
Ig

Is = 0

frs
thr

I − dJ
rs ht

Jhr
I = 0

gJshr
KbIsr − 2hs

Ih
r
K dJ

rs = 0

−frt
sgIt + dJ

rt hs
JgIt − gItgJs bJtr = 0

solutions of
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models with G adjoint tensor multiplets

vectors in G

hr
s = 0, grs = ηrs, bt rs = frst

YM field strength, Stückelberg-type coupling of tensors to three-forms,

potential vanishes, no action

{
Ar

µ

}

{
Br

µν

}

for any compact group G
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models with G adjoint tensor multiplets

vectors in G

hr
s = 0, grs = ηrs, bt rs = frst

YM field strength, Stückelberg-type coupling of tensors to three-forms,

potential vanishes, no action

{
Ar

µ

}

{
Br

µν

}

vectors in G x G [Chu, arXiv:1108.5131]
{

Ar
µ, Ar′

µ

}

frs
t = frs

t , frs′
t′ = −fs′r

t′ =
1
2
frs′

t′

dt
rs′ = dt

s′r = − 1
2
frs′

t , hr′

s = δr′

s

no three-forms, Stückelberg-type coupling of vectors to tensors,

potential vanishes, no action

grs = 0 = grs′

for any compact group G
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more general examples

New superconformal models in six dimensions H. Samtleben et al.

The kinetic matrix of the Yang-Mills multiplet, Krs ≡ φ IbIrs, shows that the Lagrangian def-
inition of the models is useful only in the conformal broken phase, where the scalar of the tensor
multiplet assumes a non-vanishing vev, which acts as an inverse Yang-Mills coupling. However,
the kinetic matrix 〈Krs〉= 〈φ I〉bIrs may have null directions in which requires further analysis.

Similar structures as the couplings of (2.20) have appeared in generic 6d supergravity theories
and the discussion of conformal fixed points in six-dimensional gauge theories [16, 17, 18, 19, 20,
21, 22].

We conclude with a presentation of the superconformal symmetry transformations [23]. De-
noting the fields in the theory by Φ = (φ I,BI

µν ,χ I,Ar
µ ,Y i j,λ r,Cµνρr), the conformal transforma-

tions are given by
δCΦ = Lξ Φ+λDΩΦ , (2.23)

where Lξ is the Lie derivative with respect to the conformal Killing vector defined by ∂(µξν) =
Ωηµν , which also defines Ω, and λD is the Weyl weight for Φ given by (2,0,5/2,0,2,3/2,0).
The Lie derivative for the fermionic fields Ψ = (χ I,λ r), in particular, takes the form Lξ Ψ =
ξ µ∂µΨ + 1

4 ∂µξνγµνΨ. The conformal supersymmetry transformations, on the other hand, in-
volve conformal Killing spinors, consisting of a pair (η+,η−) that satisfy ∂µη+ − 1

2 γµη− = 0.
The superconformal transformations take the form of supersymmetry transformations in which
the constant supersymmetry parameter ε is replaced by η+, and the parameter η− arises only in
δη−χ I = −1

2 φ Iη−. Note that the bosonic conformal transformation together with supersymmetry
ensures the full superconformal symmetry since the commutator of a conformal boost with super-
symmetry yields the special supersymmetry generator [24].

3. Solving the generalized Jacobi identities

Consistency of the non-abelian vector/tensor gauge system is encoded in the set of constraints
(2.9) – (2.15) which generalize the standard Jacobi identity of pure Yang-Mills theory. At first sight
these equations appear quite intractable, but some non-trivial solutions have been found in [1, 25].
Several of them are based on the group-theoretical considerations of gauged supergravity theories in
six dimensions which can be employed to derive particular solutions to the system of constraints.4

In this section, we will reduce the system (2.9) – (2.15) by an explicit choice of basis which allows
to exhibit the underlying structure and construct a rather large class of solutions.

For an arbitrary matrix hr
I , we can choose a basis in the space of vector and two-form tensor

fields according to a split Ar
µ −→ {Aα

µ ,Aa
µ} and Bµν

I −→ {Bµν a′ ,Bµν
a}, such that the matrix hr

I

takes diagonal form

hr
I =

(
hα b′ hα

b

hab′ ha
b

)
=

(
0 0
0 δ a

b

)
, (3.1)

with indices a = 1, . . . , rkh and indices α , and a′ labeling the complement of the spaces of vector
and tensor fields, respectively. In this basis (2.11) is solved by

gIr =

(
ga′

α ga′
b

gaα gab

)
=

(
ga′

α ga′
b

0 0

)
, (3.2)

4This does not necessarily imply that the resulting superconformal models can be embedded into supergravity.
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then the system of constraints implies that

          are the structure constants of a Lie algebra 

                                         form a representation      of 

all remaining tensors are   -invariant

fαβ
γ

db
αa = faα

b =
1
2
(Tα)a

b

g

g

g

R

which leaves three classes of models:  according to representation      of      R′ a′

       trivial : Lie algebra    with representation     , no actionR′

       adjoint : Lie algebra    with representation     , no actionR′

       contragredient to      : actionR′ R

g R
g R

[HS, Sezgin, Wimmer, Wulff]
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six dimensions which can be employed to derive particular solutions to the system of constraints.4

In this section, we will reduce the system (2.9) – (2.15) by an explicit choice of basis which allows
to exhibit the underlying structure and construct a rather large class of solutions.

For an arbitrary matrix hr
I , we can choose a basis in the space of vector and two-form tensor

fields according to a split Ar
µ −→ {Aα

µ ,Aa
µ} and Bµν

I −→ {Bµν a′ ,Bµν
a}, such that the matrix hr

I

takes diagonal form

hr
I =

(
hα b′ hα

b

hab′ ha
b

)
=

(
0 0
0 δ a

b

)
, (3.1)

with indices a = 1, . . . , rkh and indices α , and a′ labeling the complement of the spaces of vector
and tensor fields, respectively. In this basis (2.11) is solved by

gIr =

(
ga′

α ga′
b

gaα gab

)
=

(
ga′

α ga′
b

0 0

)
, (3.2)

4This does not necessarily imply that the resulting superconformal models can be embedded into supergravity.
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and the discussion of conformal fixed points in six-dimensional gauge theories [16, 17, 18, 19, 20,
21, 22].

We conclude with a presentation of the superconformal symmetry transformations [23]. De-
noting the fields in the theory by Φ = (φ I,BI

µν ,χ I,Ar
µ ,Y i j,λ r,Cµνρr), the conformal transforma-

tions are given by
δCΦ = Lξ Φ+λDΩΦ , (2.23)

where Lξ is the Lie derivative with respect to the conformal Killing vector defined by ∂(µξν) =
Ωηµν , which also defines Ω, and λD is the Weyl weight for Φ given by (2,0,5/2,0,2,3/2,0).
The Lie derivative for the fermionic fields Ψ = (χ I,λ r), in particular, takes the form Lξ Ψ =
ξ µ∂µΨ + 1

4 ∂µξνγµνΨ. The conformal supersymmetry transformations, on the other hand, in-
volve conformal Killing spinors, consisting of a pair (η+,η−) that satisfy ∂µη+ − 1

2 γµη− = 0.
The superconformal transformations take the form of supersymmetry transformations in which
the constant supersymmetry parameter ε is replaced by η+, and the parameter η− arises only in
δη−χ I = −1
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choose a basis

       contragredient to      : actionR′ R

p-form field content : {Aα, Aa, Ba, Ba, Ca}

dabc, da(αβ), d(ab)αdefined by choice of     and      and invariant tensorsg R

e.g. scalar potential                                       (can be vanishing)Lpot = dabc φaφbφc
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− 1
2

dIrsF
r
µν λ̄ sγµν χ I +2dIrsY r

i j λ̄ i sχ j I − 1
3
(Tα)b

a dars λ̄ rγµλ αλ̄ sγµλ b

+
1
2

(Tα)a
b λ̄ α (φ aχb−4φbχa)−3dabαφ aλ̄ α χb−3dabcφ aλ̄ bχc +

1
4

dabc φ aφ bφ c

+
1
32

εµνρλστ Ba
µν

(
daαβ Fα

ρλ Fβ
στ +dabα Fα

ρλ Bb
στ +

1
3

dabc Bb
ρλ Bc

στ

)
. (4.19)

Sums over indices r,s still need to be split according to λ r → {λ α ,λ a}, F r → {Fα ,Ba}, etc.
Note that only the self-dual part of the field Cµνρ a appears in the Lagrangian and acts as a

Lagrange multiplier for the self-duality equation
(

D[µBa
νρ]

)−
= −1

3
(Tα)b

aλ̄ αγµνρλ b , (4.20)

which constitutes half of the additional first-order equations (2.21). The other half of (2.21) deter-
mines the anti-self dual part of Cµνρ a to be

C (−)
µνρ a = −darsλ̄ rγµνρλ s . (4.21)

Since the anti-self-dual part C (−)
µνρ a does not show up in the action (4.19), we can impose (4.21) as

its definition in all previous formulas. Therefore we find that in contrast to the general Lagrangian
(2.20), the explicit Lagrangian (4.19) for this particular model implies all the field equations with-
out the need to impose additional first-order duality equations by hand!

In this model, the supersymmetry transformation rules are those given in (4.6), (4.7) and

δφa = ε̄χa ,

δ χ i
a =

1
48

C (+)
µνρ a γµνρ ε i +

1
4

γµDµφaε i− 1
2

darsγµλ i r ε̄γµλ s ,

δCµνρ a = −3 ε̄ γ[µνDρ]χa−6dars F
r
[µν ε̄γρ]λ s−2dIas ε̄γµνρλ sφ I . (4.22)

In fact, the relevant part of the last transformation is the projection onto its self-dual part, while its
anti-self dual part just describes the transformation of (4.21) into the field equation of χa .

It is worth noting that the cubic scalar potential of (4.19) contains at most half of the scalar
fields and is entirely triggered by the gauge invariant tensor dabc . Moreover, the different d-tensors
exist only for particular choices of the Lie-algebra g and representations R. It is therefore natural
(and consistent) to consider generic models where we set all d-tensors to zero. In that case the
action simplifies to

L = −1
4

Dµφa Dµφ a− χ̄a γµDµ χa +
1
8
(Tα)b

aφa

(
Bb

µνFµν α −4Y b
i jY

i j α +8λ̄ (bγµDµλ α)
)

− 1
8
C µνρ (+)

a

(
DµBa

νρ +
1
3

(Tα)b
aλ̄ αγµνρλ b

)
− 1

4
(Tα)b

aBb
µν λ̄ αγµν χa

− 1
4

(Tα)b
aFα

µν λ̄ bγµν χa +2(Tα)b
aY (b

i j λ̄ iα)χ j
a +

1
2

(Tα)a
b λ̄ α (φ aχb−4φbχa) . (4.23)

The tensor field equations for the multiplet in the representation R are the same as in (4.8).
For the tensor multiplet in the contragredient representation R ′ one obtains,

C (−)
µνρ a = 0 , /Dχ i

a =−2(Tβ )a
bλ β iφb , DµDµφa =−2(Tβ )a

bλ̄ β χb . (4.24)
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with all d-tensors set to zero:

(classical) dynamics remains complicated...

[HS, Sezgin, Wimmer, Wulff]



conclusions / outlook

‣ non-abelian tensor fields
▹  non-abelian two-forms
▹  coupling to three-form gauge potentials

‣ supersymmetry implies equations of motion
 ▹  (1,0) superconformal system
 ▹  action

‣ consistency constraints and classes of examples
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‣ non-abelian tensor fields
▹  non-abelian two-forms
▹  coupling to three-form gauge potentials

‣ supersymmetry implies equations of motion
 ▹  (1,0) superconformal system
 ▹  action

‣ consistency constraints and classes of examples

‣ understand their structure / quantization
 ▹  ghosts: gauge fixing, imposing further constraints ...
 ▹  cubic potential, vector field dynamics

‣ classification: solutions to the consistency constraints
 ▹  Jacobi identities, fundamental identities, ....
 ▹  Killing spinor equations, BPS solutions    [Akyol, Papadopoulos]

‣ extension to (2,0) theories, relation to D=5 SYM
 ▹  include hypermultiplets, non-propagating vector multiplets
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