Boundary state from Ellwood invariants

Martin Schnabl

Based on collaboration with Matěj Kudrna & Carlo Maccaferri Institute of Physics AS CR

Ginzburg Conference on Physics, Moscow, May 29, 2012

Outline

- Introduction
- Boundary state from Ellwood invariants
- Analytic solutions: Rolling tachyon
- Numerical solutions: Lumps in Siegel gauge
- Conclusion

- The nicest problems in theoretical physics are ones which are: easy to state, difficult to solve and with many relations to other branches to physics
- One such problem is classification of the boundary states in a given CFT or equivalently admissible open string vacua or D-branes.

- Describe possible boundary conditions from the closed string channel point of view.
- Conformal boundary states obey:
 - 1) the gluing condition $(L_n \bar{L}_{-n})|B\rangle = 0$
 - 2) Cardy condition (modular invariance)
 - 3) sewing relations (factorization constraints)

See e.g. reviews by Gaberdiel or by Cardy

• The gluing condition is easy to solve: For any spin-less primary $|V_{\alpha}\rangle$ we can define $||V_{\alpha}\rangle\rangle = \sum_{IJ} M^{IJ}(h_{\alpha})L_{-I}\bar{L}_{-J}|V_{\alpha}\rangle$

where M^{IJ} is the inverse of the real symmetric Gramm matrix

$$M_{IJ}(h_{\alpha}) = \langle V^{\alpha} | L_I L_{-J} | V_{\alpha} \rangle$$

where $L_{-X} \equiv L_{-n_k} \dots L_{-n_1}$, (with possible null states projected out).

Ishibashi 1989

Explicitly:

$$||V_{\alpha}\rangle\rangle = \left[1 + \frac{1}{2h_{\alpha}}L_{-1}\bar{L}_{-1} + B(h_{\alpha},c)\left(2(1+2h_{\alpha})L_{-2}\bar{L}_{-2} - 3(L_{-2}\bar{L}_{-1}^{2} + L_{-1}^{2}\bar{L}_{-2}) + \frac{8h_{\alpha} + c}{4h_{\alpha}}L_{-1}^{2}\bar{L}_{-1}^{2}\right) + \cdots \right]|V_{\alpha}\rangle$$

$$B(h_{\alpha},c) = \frac{1}{2h_{\alpha}(8h_{\alpha} - 5) + c(2h_{\alpha} + 1)}.$$

- The other conditions are much harder to deal with however. Probably not even the full set of necessary conditions is known.
- We will now show how to construct boundary states (appropriate linear combinations of Ishibashi states) from OSFT solutions.

Lightning minireview of OSFT

Open string field theory uses the following data

 \mathcal{H}_{BCFT} , *, Q_B , $\langle . \rangle$. All of the string degrees of freedom are assembled in $|\Psi\rangle = \sum_i \int d^{p+1}k \,\phi_i(k) |i,k\rangle,$

Witten (1986) proposed the following action

$$S = -\frac{1}{g_o^2} \left[\frac{1}{2} \left\langle \Psi * Q_B \Psi \right\rangle + \frac{1}{3} \left\langle \Psi * \Psi * \Psi \right\rangle \right],$$

Lightning minireview of OSFT

- The classical equation of motion take the form $Q_B \Psi + \Psi * \Psi = 0$
- Analytic solutions can be found in the K,B,c basis

$$c^{2} = 0, \quad B^{2} = 0, \quad \{c, B\} = 1$$

 $[K, B] = 0, \quad [K, c] = \partial c$
 $Q_{B}K = 0, \quad Q_{B}B = K, \quad Q_{B}c = cKc.$

• For example $\Psi = Fc \frac{KB}{1-F^2} cF$, Here F = F(K) is arbitrary M.S. (2005), Okawa 2006

Ellwood conjecture

- Solutions to OSFT e.o.m. are believed to be in 1-1 correspondence with consistent boundary conditions.
- The widely believed (and tested, but unproven) Ellwood conjecture states that for every on-shell \mathcal{V}_{cl} :

$$\langle \mathcal{V}_{cl} | c_0^- | B_\Psi \rangle = -4\pi i \langle I | \mathcal{V}_{cl}(i) | \Psi - \Psi_{\mathrm{TV}} \rangle,$$

Here Ψ is a solution of the e.o.m., Ψ_{TV} is the tachyon vacuum and $|B_{\Psi}\rangle$ is the boundary state we are looking for.

Ellwood (2008)

Generalized Ellwood invariants

 The restriction to on-shell state can be bypassed. Any solution built using reference BCFT₀ can be written as

$$\Psi = \sum_{j} \sum_{\substack{I = \{n_1, n_2, \ldots\}\\J = \{m_1, m_2, \ldots\}}} a_{IJ}^j L_{-I}^{\text{matter}} |\mathcal{V}_j\rangle \otimes L_{-J}^{\text{ghost}} c_1 |0\rangle$$

and uplifted to $\text{BCFT}_0 \otimes \text{BCFT}_{aux}$, where BCFT_{aux} has c=0 and contains free boson Y with Dirichlet b.c. One can then compute Ellwood invariant with $\tilde{\mathcal{V}}^{\alpha} = c \bar{c} V^{\alpha} e^{2i \sqrt{1-h} Y} w$

> Trick inspired by Kawano, Kishimoto and Takahashi (2008)

Generalized Ellwood invariants

• Since $|B_{\Psi}\rangle^{\text{CFT}_0 \otimes \text{CFT}_{aux}} = |B_{\Psi}\rangle^{\text{CFT}_0} \otimes |B_0\rangle^{\text{CFT}_{aux}}$ we find

$$\left\langle \left. c\bar{c}V^{\alpha}\right| c_{0}^{-}\left|B_{\Psi}\right.\right\rangle = -4\pi i \left\langle \left. E[\tilde{\mathcal{V}}^{\alpha}]\right| \tilde{\Psi} - \tilde{\Psi}_{TV}\right.\right\rangle$$

This is gauge invariant even w.r.t. the gauge symmetry of the original OSFT based on BCFT₀

 $Lift \circ (Gauge Transf)_{\Lambda} = (Gauge Transf)_{Lift(\Lambda)} \circ Lift$

Boundary state from Ellwood invariants

Hence the coefficients of the boundary state

are given by

$$n_{\Psi}^{\alpha} = -\frac{4\pi i}{\mathcal{N}_{gh}} \left\langle I | \tilde{\mathcal{V}}^{\alpha}(i) | \tilde{\Psi} - \tilde{\Psi}_{\mathrm{TV}} \right\rangle$$
where $\tilde{\mathcal{V}}^{\alpha} = c\bar{c}V^{\alpha}e^{2i\sqrt{1-h}Y}w$

 $|B_{\Psi}\rangle = \sum n_{\Psi}^{\alpha} ||V_{\alpha}\rangle\rangle$

$$\mathcal{N}_{gh} = \left\langle c\bar{c} | c_0^- | B_{bc} \right\rangle$$

For alternative attempt see: Kiermaier, Okawa, Zwiebach (2008)

Translating back to BCFT?

• The coefficients n_{Ψ}^{α} of the Ishibashi states can be related by the above conjecture to more BCFT-like quantities

$$n_{\Psi}^{\beta} = -\frac{\pi}{2} \sum_{j} 4^{h_j} A_{\Psi}^j \left\langle V^{\beta}(0)\phi_j(1) \right\rangle_{\text{disk}}^{\text{BCFT}_0^{\text{matter}}}$$

where A_{Ψ}^{j} are gauge-invariant linear combinations of coefficients in the ϕ_{j} sector of the OSFT solution Ψ

Example: Rolling tachyon

• OSFT solution known analytically

$$\Psi_{\lambda} = Fc \frac{B}{1 + \lambda e^{X^0} \frac{1 - F^2}{K}} \lambda c e^{X^0} F_{1}$$
 M.S.; Kiermaier et al. 2007

- Computing the Ellwood invariant one finds $|B_{\Psi}\rangle = e^{-\lambda \int_{0}^{2\pi} d\theta \ e^{X^{0}}} |B_{0}\rangle$
- From this Sen's tachyon matter conjecture follows (by repeating computation of Larsen et al.)

$$\frac{T^{ij}(x^0)}{\text{Vol}_{25}} = -\frac{1}{1+\lambda e^{x^0}} \delta^{ij}$$
$$\frac{T^{00}(x^0)}{\text{Vol}_{25}} = 1.$$

• At radius $R = 2\sqrt{3}$ we find several double lump solutions. One of them looks like this

It has always been a problem to understand the point-like nature of D-branes

Energy density profile from our boundary state should look like

$$E_{(a)}(x) = \delta\left(x - \pi R(1 - a)\right) + \delta\left(x - \pi R(1 + a)\right) = \frac{1}{\pi R}\left(\frac{1}{2}E_0 + \sum_{n=1}^{\infty} E_n \cos\frac{nx}{R}\right)$$

where the Ellwood invariants E_n should take values

$$E_n = 2(-1)^n \cos(n\pi a)$$

With the help of computer cluster we were able to go to level (12,36) and found the following invariants

L	Action	D	E_0	E_1	E_2	E_3	E_4	E_5
1	2.57014	2.4209	2.4209	-0.816955	-0.54184	1.3133		_
2*	2.21165	-1.69337	2.1897	-0.848747	-0.60583	1.89707	-1.62092	_
3	2.19355	-2.50001	2.11767	-0.908501	-0.838798	1.84278	-1.24372	-0.987367
4*	2.06874	-1.39183	2.08709	-0.919667	-0.850043	1.88425	- 1.0523	-1.02488
5	2.05531	-1.37542	2.07382	-0.983959	-0.812633	1.91245	-1.15202	-0.57724
6	2.03894	-2.09185	2.05368	- 1.00138	-0.788653	1.92175	- 1.30591	-0.518028
7	2.03494	-2.1419	2.04912	-1.03283	-0.765547	1.90846	-1.35827	-0.488344
8	2.0269	-1.71527	2.04119	-1.04599	-0.743696	1.90879	-1.35485	-0.42022
9	2.02525	-1.70495	2.03899	-1.06273	-0.734362	1.91644	-1.37781	-0.37505
10	2.02052	-2.07063	2.03154	-1.07229	-0.717661	1.91526	-1.44161	-0.329759
11	2.01969	-2.08504	2.03029	-1.08369	-0.709787	1.90937	-1.45664	-0.295048
12	2.01658	-1.81655	2.02687	- 1.09091	-0.696749	1.90744	-1.45907	-0.256288
Expected	2	-2	2	- 1.18	-0.61	1.90	- 1.63	0.03

The expected value is obtained for the best fit value a=0.3

 For a visual comparison with the delta function profile we plot both curves where we keep only 6 harmonics

Conclusions

- We have described a very nice new tool to extract physics out of OSFT. It works with both analytic and numerical solutions. One should also try to prove the Ellwood conjecture, however.
- OSFT, a grand Sudoku, is a potentially systematic approach to find all consistent boundary states.
- We are coming to an era of possible computer exploration of the OSFT landscape – stay tuned!