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ABSTRACT

Intergalactic magnetic fields are assumed to have been sponta-
neously generated at the reheating stage of the early Universe,
due to vacuum polarization of non-Abelian gauge fields at high
temperature. The fact that the screening mass of this type of
fields has zero value was discovered recently. A procedure to es-
timate their field strengths, B(T ), at different temperatures is
here developed, and the value B ∼ 1014G, at the electroweak
phase transition temperature, is derived by taking into considera-
tion the present value of the intergalactic magnetic field strength,
B ∼ 10−15G, coherent on the ∼ 1 Mpc scale. As a particular
case, the standard model is considered and the field scale at high
temperature is estimated in this case.
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INTERGALACTIC MAGNETIC FIELDS

Magnetic fields B ∼ µG presence everywhere – in galaxies, clusters of galaxies
Determination of intergalactic magnetic fields B0 ∼ 10−15G:

[S. Ando, A. Kusenko, Astrophys. J. Lett. 722 (2010) L 39][arXiv:1005.1924] looked at
the source morphology (hallo, γ cascades: γ → e+e− → γ∗, γ∗, ...);

[S. Ando, A. Kusenko, [arXiv:1012.5313]] looked at blazer spectra.

Complementary and independent methods.

[W. Essey, S. Ando, A. Kusenko,Astropart. Phys. 35 (2011) 1351] Model independent
2σ CL interval 1× 10−17 ≤ B ≤ 3× 10−14 G was estimated

This value was estimated either as lower or upper limit. So, it is actual value at 3.5CL
accuracy.

[A. Neronov, E. Vovk. Science 328 (2010) 73.] B0 ∼ 10−16G.



ASTROPHYSICAL CONSTRAINTS

• Bing Bang Nucleosynthesis (BBN) limit B ≤ 1011G
or B ≤ 7 · 10−7G at galaxy formation;

• Cosmic microwave background (CMB) limit B ≤ 10−9G.



MECHANISMS for GENERATION of B

Popular mechanisms for generation of seed magnetic fields at high temperature in the early
universe:

• metric perturbations

• strong first order EW phase transition [Hogan (1983), Vachaspaty (1991)]

• stochastic electric currents

• paramagnetic resonances in scalar (or axion) - electromagnetic field system

• Born-Infield electrodynamics, HE effective Lagrangian

• inflation

• cosmic strings

• trace anomaly

• extradimensions

• gravitational couplings of gauge field potentials



In all these considerations it is ASSUMED

magnetic flux is conserved

and therefore the dependence of B ∼ T 2

takes place at cooling of the universe.

OUR MAIN IDEA:

primordial magnetic field is spontaneously generated due to

vacuum polarization of non-Abelian gauge fields.

These magnetic fields are temperature dependent

[Starinets, Vshivtsev, Zhukovsky(1994)],

[Skalozub(1996)], [Bordag, Skalozub (2000)],

[Demchik, Skalozub (2008)] (in lattice simulations):

B(T ) ∼ g3T 2

log T
τ

. (1)

So, there is no magnetic flux conservation at high temperature!



Spontaneous vacuum magnetization

At zero temperature, [ Savvidy (1978)]. The magnetized vacuum state is

unstable because of the mode p20 = p2|| − gB in the gluon spectrum,

p20 = p2|| + (2n + 1)gB, n = −1, 0, 1, ..., (2)

that results in a condensate. Because of instability, the Abelian constant mag-

netic field B = const is completely screened.

At T 6= 0 the spectrum stabilization happens due to either a gluon magnetic

mass of charged gluons [Bordag, Skalozub (2000)] or a so-calledA0-condensate

which is proportional to the Polyakov loop [Starinets, Vshivtsev, Zhukovskii

(1996)].

Hence, stabilization of magnetized vacuum takes place.



SPONTANEOUS VACUUM MAGNETI-
ZATION at HIGH TEMPERATURE

On a lattice, the main continuous object is a magnetic flux. We relate the free

energy density of the flux to the effective action [Demchik, Skalozub (2008)],

F (ϕ) = S̄(ϕ)− S̄(0), (3)

where S̄(ϕ) and S̄(0) are the effective lattice actions with and without chro-

momagnetic field, ϕ is the field flux.

The spontaneous creation of the field follows if free energy has

a global minimum at non-zero flux, ϕmin 6= 0.



The hypercubic lattice Lt × L3
s (Lt < Ls) with the hypertorus geometry

was used; Lt and Ls are the temporal and the spatial sizes of the lattice,

respectively. In the limit of Ls → ∞ the temporal size Lt is related to physical

temperature.

The Wilson action of the SU(2) lattice gauge theory is

SW = β
∑

x

∑

µ>ν

[

1− 1

2
Tr Uµν(x)

]

; (4)

Uµν(x) = Uµ(x)Uν(x + aµ̂)U †
µ(x + aν̂)U †

ν(x), (5)

where β = 4/g2 is lattice coupling, g is the bare coupling, Uµ(x) is the link

variable located on the link leaving the lattice site x in the µ direction, Uµν(x)

is the ordered product of the link variables. The effective action S̄ in (3) is

the Wilson action SW averaged over the Boltzmann configurations produced

in the MC simulations.



Fig. 3: The plaquette presentation of the twisted boundary conditions

The chromomagnetic flux ϕ through the whole lattice was introduced by ap-

plying the twisted boundary conditions. In this approach, the edge links in

all directions are identified as usual periodic boundary conditions except for the

links in the second spatial direction, for which the additional phase ϕ is added.

The magnetic flux ϕ is measured in angular units, ϕ ∈ [0; 2π).



The MC simulations are carried out by means of the heat bath method. The

lattices 2 × 83, 2 × 163 and 4 × 83 at β = 3.0, 5.0 are considered. These

values of the coupling constant correspond to the deconfinement phase and

perturbative regime.

The effective action depends smoothly on the flux ϕ in the region ϕ ∼ 0.

So, the free energy density can be fitted by a quadratic function of ϕ,

F (ϕ) = Fmin + b(ϕ− ϕmin)
2. (6)

In Eq.(6), there are three unknown parameters, Fmin, b and ϕmin. ϕmin denotes

the minimum position of free energy, whereas the Fmin and b are the free

energy density at the minimum and the curvature of the free energy function,

correspondingly. They have been fitted by a standard χ2 method.

Table 1: The values of the generated fluxes ϕmin for different lattices
(at the 95% confidence level).

2× 83 2× 163 4× 83

β = 3.0 0.019+0.013
−0.012 0.0069+0.0022

−0.0057 0.005+0.005
−0.003

β = 5.0 0.020+0.011
−0.010



The fit results are given in the Table 1. As one can see, ϕmin demonstrates

the 2σ-deviation from zero.

Fig. 4: The 95% confidence level area for the parameters Fmin and ϕmin

(b for right fig.).

The flux ϕmin is positively determined!



MAGNETIC FIELD CHARACTERISTICS

The most essential for what follows characteristics of the field:

Stability

To verify stability we substituted the value of Bmin(T ) in the one-loop

EP, the imaginary part was of the order 10−12 of the real one.

This means the stable state!

Temperature dependence

In SU(2) gluodynamics, from the EP

V (B, T ) = V (1)(B, T ) + V (ring)(B, T ) it was determined

(gH)1/2 =
g2

2π

T

1 + 11g2

12π2
log(T/τ )

. (7)



Masslessness (long-range magnetic fields)

In SU(2) lattice gauge theory in the presence of Abelian magnetic fields

[Antropov, Bordag, Demchik, Skalozub (2011)].

We use the General Purpose computation on Graphics

Processing Units (GPGPU) technology allowing to study the large

lattices up to 32× 643.

The magnetic flux is introduced by applying the twisted boundary conditions.

For each lattice geometry Lt×L3
s, we have fitted the effect of magnetic field

with the lattice plaquette average by means of different functions:

〈Uuntwisted〉 − 〈Utwisted〉 = f(m,Ls). (8)

The best fit function for Abelian magnetic field is C/r exp(−mr) with a

small value of the magnetic mass m = 0.0000125. This case corresponds

to the magnetic tube with increasing field strength. Actually, the magnetic

mass is equal to zero within the statistical uncertainties appeared.



Spontaneously generated chromomagnetic field is temperature

dependent, stable and massless (long range).

Abelian field
Fit function χ2 C m

C exp(−mr) 901.8 0.063 m = (2.44+0.06

−0.06)× 10−2

C exp(−m2r2) 1924.4 0.035 m = (1.57+0.02

−0.02)× 10−2

C/r 7.090 0.911

C/r exp(−mr) 7.086 0.912 m = (1.25+52
−54)× 10−6

C/r exp(−m2r2) 7.090 0.911 m2 = (2.4+5951.2
−5784 )× 10−10

C/r2 31400 28.13

C/r2 exp(−m2r2) 7550 18.26 m2 = −3.3× 10−5

C/r4 159500 248.9

C/r4 exp(−m4r4) 161000 10.0 m = 0.0

Table 3: Fit results for magnetic
mass of Abelian magnetic
field.



QUALITATIVE CONSIDERATION

The most relevant aspects of the phenomena of interest are consequences

of asymptotic freedom and spontaneous symmetry breaking

at finite temperature – the basic principles of modern QFT.

Our main assumption is that the intergalactic magnetic field had been spon-

taneously created at reheating stage of the universe evolution.



First, in non-Abelian gauge theories magnetic at high temperatures flux con-

servation does not hold. The vacuum acts as a specific source generating

classical fields.

Second, the spontaneous vacuum magnetization takes place for small scalar

field φ 6= 0, only. For the values of φ corresponding to any first order phase

transition it does not happen.

After the electroweak phase transition, the vacuum polarization ceases to gen-

erate magnetic fields and magnetic flux conservation holds. As a result, the

familiar dependence on the temperature B ∼ T 2 is restored.



Composite structure of electromagnetic field Aµ. The potentials

Aµ =
1

√

g2 + g′2
(g′A3

µ + gbµ), (9)

Zµ =
1

√

g2 + g′2
(gA3

µ − g′bµ),

Only the component Aµ = 1√
g2+g′2

g′A3
µ = sin θwA

3
µ is present at high tem-

perature. Here θw is the Weinberg angle, tan θw = g′
g .

This is the only component responsible for the intergalactic mag-

netic field at low temperature.



In restored phase, bµ = 0, and A
(3)
µ is unscreened. This is because the

magnetic mass of this field is zero [S. Antropov, M. Bordag, V. Demchik, V.

Skalozub (2011)].

The field is a long range. Its coherence length is to be sufficiently large.

The constituent of the weak isospin field corresponding to the magnetic one is

B(T ) = sin θw(T )B
(3)(T ), (10)

where B(3)(T ) is the strength of the field generated spontaneously.

After the phase transition, part of the field is screened.



For EWPT temperature Tew:

B(Tew)

B0
=

T 2
ew

T 2
0

=
sin θw(Tew)B

(3)(Tew)

B0
, (11)

B0 ∼ 10−15G. Parameter τ can be fixed for given temperature and B0. After

that, the field strength values at various temperatures can be calculated.

Conclusion:

This is the lower bound on the magnetic field strength in the

hot Universe.



EFFECTIVE POTENTIAL at HIGH T

The spontaneous vacuum magnetization and zero magnetic mass for the Abelian

magnetic fields were determined in lattice simulations [V. Demchik, V. Skalozub

(2008)], [S. Antropov, M. Bordag, V. Demchik, V. Skalozub (2011)].

The value of B(T ) is close to that calculated with EP

V (B, T ) = V (1)(B, T ) + V ring(B, T ).

We present analytic results, considering the W -boson contributions as an ex-

ample.



Consider two limits,

1. weak magnetic field and large scalar field condensate, h = eB/M 2
w < φ2,

φ = φc/φ0, β = 1/T ,

2. the case of the restored symmetry, φ = 0, gB 6= 0, T 6= 0.

For the former, we show the absence of spontaneous vacuum magnetization

at finite temperature.

For the latter , we estimate B(T ). Here Mw is the W -boson mass at zero

temperature, φc is a scalar field condensate, and φ0 its value at zero tempera-

ture.



1. Contribution of W -bosons,

V (1)
w (T, h, φ) =

h

π2β2

∞
∑

n=1

[(φ2 − h)1/2β

n
K1(nβ(φ

2 − h)1/2) (12)

− (φ2 + h)1/2β

n
K1(nβ(φ

2 + h)1/2)
]

.

Here n labels discrete energy values and K1(z) is the MacDonald func-

tion.

The high temperature limit is the pure Yang-Mills part (B̃ ≡ B(3)),

V (1)
w (B̃, T ) =

B̃2

2
+

11

48

g2

π2
B̃2 log

T 2

τ 2
− 1

3

(gB̃)3/2T

π
(13)

− i
(gB̃)3/2T

2π
+O(g2B̃2),

where τ is a temperature normalization point.



2. The charged scalar contribution

V (1)
sc (B̃, T ) = − 1

96

g2

π2
B̃2 log

T 2

τ 2
+

1

12

(gB̃)3/2T

π
+O(g2B̃2), (14)

describing the contribution of longitudinal vector components.

The imaginary part is generated because of the unstable mode in the

spectrum (2). It is canceled by the term in daisy diagrams for the unstable

mode

Vunstable =
gB̃T

2π
[Π(B̃, T, n = −1)− gB̃]1/2 + i

(gB̃)3/2T

2π
. (15)

Here Π(B̃, T, n = −1) is the mean value in the ground state n = −1

of the spectrum (2). If this value is large, spectrum stabilization takes

place.



In the review [V. Demchik, V. Skalozub arXiv:hep-th/9912071 (1999)] the

complete EP is present. The mean value of one-loop PT in the spectrum

ground state reads,

Π(B̃, T, n = −1) = α[12.33
(g sin θwB)1/2

β
+ i4

(g sin θwB)1/2

β
]. (16)

Here β = 1/T . Sufficiently large real part stabilizes the spectrum due to

radiation corrections included.



MAGNETIC FIELD at Tew

Spontaneous vacuum magnetization at T 6= 0 and non-small φ 6= 0.

Notice, the magnetization is produced by the gauge field contribution given

in Eq. (12). We consider the limit of gB
T 2 ≪ 1 and φ2 > h. We use the

asymptotic expansion of K1(z),

K1(z) ∼
√

π

2z
e−z

(

1 +
3

8z
− 15

128z2
+ · · ·

)

, (17)

where z = nβ(φ2 ± h)1/2.

Let us investigate the limit of β → ∞, T
φ
≪ 1 and substitute (φ2 ± h)1/2 =

φ(1± h
2φ2

).



The sum of the tree level energy and (12) reads

V =
h2

2
− h2

π3/2

T 1/2

φ1/2

(

1 − T

2φ

)

e−
φ
T . (18)

The second term is exponentially small and the stationary equation ∂V
∂h = 0

has the trivial solution h = 0.

We conclude:

after symmetry breaking the spontaneous vacuum

magnetization does not take place.



At the EWPT temperature the total EP must be used. This can be best done

numerically.

To explain the procedure, we consider the part of this EP accounting for the

one-loop W -boson contributions.

The high temperature expansion for the EP coming from charged vector fields

is given in (13).

The value of chromomagnetic weak isospin field coming from (13) and (14)

is

B̃(T ) =
1

16

g3

π2

T 2

(1 + 5
12

g2

π2
logT

τ )
2
. (19)

We relate this expression with the intergalactic magnetic field B0.



Let us introduce the notations, g2

4π = αs, α = αs sin θ
2
w,

(g′)2
4π = αY and

tan2 θw(T ) =
αY (T )
αs(T )

, where α is the fine structure constant.

For a rough estimate, we substitute: sin2 θw(T ) = sin2 θw(0) = 0.23.

For the given temperature EWPT, Tew, the field strength is

B(Tew) = B0
T 2
ew

T 2
0

= sin θw(Tew)B̃(Tew). (20)



Assuming Tew = 100GeV = 1011eV and T0 = 2.7K = 2.3267 · 10−4eV , we

obtain

B(Tew) ∼ 1.85 1014G. (21)

This value can serve as a lower bound on B(T ) at the EWPT. Hence, for

the value of X = log Tew
τ , we have the equation

B0 =
1

2

α3/2

π1/2 sin2 θw

T 2
0

(1 + 5α
3π sin2 θw

X)2
, (22)

and log τ can be estimated.

To guess the value of τ we take B0 ∼ 10−9G, usually used in cosmology. From

Eq. (22) we obtain τ ∼ 300eV .

For the lower bound value B ∼ 10−15G this parameter is much smaller.

The strong suppression of B(T ) is difficult to explain within the

SM!



Let us compare the above results with the field strength B(Tew) calculate

directly in the Standard model [V. Demchik, V. Skalozub (2002)]:

B(Tew) ∼ 1020G. (23)

This is 106 times larger than in Eq.(21), and corresponds to the comoving

magnetic field 10−9 G.

This huge discrepancy requires relevant explanations!



MAGNETIC FIELD SCALE

Consider the scale of the field generated in the restored phase.

We used the “frozen in” conditioins. Let us discuss its applicability.

If one assumes that after the EWPT the field B(Tew) was frozen in the

plasma at the Hubble scale, RH(Tew), then its comoving coherence scale at

present will be λB(T0) = 6 · 10−4 pc.

This is much smaller than is needed.



One possible scenario is based on the stochastic processes considered al-

ready by [Hogan (1983)].

It was pointed out that magnetic fields correlated on large scales can be

produced not only through causal processes but also by a stochastic random

walk mechanism, if the magnetic lines generated in some domain of space

“forget” about their origin.

The field strength developed on large scales by this process

can be estimated as BN ∼ B/
√
N , where N counts the number of do-

mains, with the field B of a given size, crossed by a magnetic line. The

correlation length λB in this case can be estimated as λB(T ) ∼ NRH(T ).



[If spontaneous vacuum magnetization occurs.]

At a given temperature, each uncorrelated domain of space having a Hubble

radius RH(T ) is filled up with a constant magnetic field B(T ).

Its orientation in both external and internal spaces is arbitrary. Hence, a

stochastic behavior of the field lines and the appearance of magnetic fields

having large correlation lengths λB(T ) ≥ RH(T ) are expected.

After the EWPT, these fields evolve as B ∼ T 2.



[Let us check this possibility ].

Make use the usual relation

a(Tew)

a(T0)
=

T0

Tew
, (24)

taken at the EWPT epoch, and the present-day parameters,

Tew = 100 GeV = 1011 eV, T0 = 2.3267 · 10−4 eV.

If λB(T) ∼ a(T), then from (24) it follows: λB(T0) = 6 · 10−4 ps .

On the other hand, if one takes λB(T0) = 1 Mpc,

the value λB(Tew) = 2.33 · 10−15 Mpc is obtained.

The horizon size is a(Tew) = 1.27 · 10−24 Mpc,

thus, λB(Tew) >> a(Tew).

Such long-range magnetic fields are not affected by turbulence.



Now, we relate the size of the correlated field with the random walk process.

At Tew, λB(Tew) = Na(Tew). Hence, we get
√
N = 3 · 104,

and for B(T ) “straightened” on the N -domain scale, BN ∼ B(Tew)√
N

Accounting for B(Tew) ∼ 1020G , we obtain Bls(Tew) ∼ 3 · 1015 G

This value is close to Bls(Tew) ∼ 2 · 1014 G.

The discrepancy can be explained:

1) due to the roughness of our estimate.

2) by the necessity of substituting the standard model.



CONCLUSION

• At the Tew, long range magnetic fields of the order B(Tew) ∼ 1014G did

exist. They are not affected by turbulence processes.

• Vacuum polarization is responsible for the value of B(T ) at each tem-

perature and serves as a source of it.

• After symmetry breaking, φ-condensate suppresses the magnetization

and usual dependence B ∼ T 2 recovers.

• Due to stability and zero magnetic mass of the fields, there are no problem

with creating of long-range magnetic fields at high temperature.

• Intergalactic magnetic field has been generated at reheating

stage of the universe evolution.
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