Wave Processes Laboratory Faculty of Mechanics & Mathematics Moscow M. V. Lomonosov State University



#### Self-sustaining waves in metastable media

Energy needed to support such waves is released by the wave itself :
waves of combustion,
waves of boiling in overheated liquids,
waves of thermonuclear fusion.



#### **Two modes of combustion**



Advantages of detonation mode

High thermodynamic efficiency of Chapmen-Jouget detonation as compared to other combustion modes is due to the minimal entropy of the exhaust jet. CO emission reduction. High rate of energy conversion ( $10^3$  times) Specific impulse increase

I<sub>PDE</sub>

#### **Practical importance of controlling** detonation initiation

working out effective preventive measures, such as suppressing deflagration to detonation transition (DDT) in case of combustible mixture ignition,

the advantages of burning fuel in a detonation regime in comparison with slow burning at constant pressure attract increasing attention to pulse detonation engines.



# 

**Deflagration to detonation transition scenarios.** 

- Macro-kinetics mathematical model for DDT.
- Several new combustion modes in tubes incorporating cavities.
- The effect of volume ratio parameters on combustion modes.
- The effect of non-uniformity in cavities size distribution.

#### Flame Acceleration Scenarios in Gases.



#### Macroscopical Kinetics for Modeling of DDT

**Equations for multicomponent reacting** compressible viscous flows. **Three-equation turbulence model. Reduced chemistry modeling.** Initial and boundary conditions. **Confinement geometry: tubes with wider** cavities.

#### **Governing equations for reacting turbulent flows**

 $\partial_t(\rho) + \nabla \cdot (\rho \vec{u}) = 0$  $\partial_t (\rho Y_k) + \nabla \cdot (\rho \vec{u} Y_k) = -\nabla \cdot \vec{I}_k + \dot{\omega}_k$  $\partial_t (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) = \rho \vec{g} - \nabla p + \nabla \cdot \tau$  $\partial_t (\rho E) + \nabla \cdot (\rho \vec{u} E) = \rho \vec{u} \cdot \vec{g} - \nabla \cdot p \vec{u} - \nabla \cdot \vec{I}_a + \nabla \cdot (\tau \cdot \vec{u})$  $p = R_g \rho T \sum_{k} Y_k / W_k \qquad E = \sum_{k} Y_k (c_{vk} T + h_{0k}) + \frac{\vec{u}^2}{2} + k$  $\vec{I}_q = \vec{J}_q + \sum (c_{pk}T + h_{0k})\vec{I}_k \quad \vec{I}_k = -\rho(D + (v^t / \sigma_d))\nabla \cdot Y_k \quad \vec{J}_q = -(\lambda + \sum c_{pk}Y_k\rho(v^t / \sigma_t))\nabla \cdot T$  $\tau = (\mu + \rho v^t)(\nabla \vec{u} + \nabla \vec{u}^T - (2/3)(\nabla \cdot \vec{u})U) - (2/3)\rho kU$  $v^t = C_{\mu} \frac{k^2}{\varepsilon}.$ 

#### **Turbulence model**

 $\partial_t(\rho k) + \nabla \cdot (\rho \vec{u} k) = \nabla \cdot ((\mu + \rho (\nu^t / \sigma_k)) \nabla k) + \tau^t : \nabla \vec{u} - \rho \varepsilon$  $\partial_t(\rho\varepsilon) + \nabla \cdot (\rho \vec{u}\varepsilon) = \nabla \cdot ((\mu + \rho(\nu^t / \sigma_\varepsilon))\nabla\varepsilon) + (\varepsilon / k)(C_{1\varepsilon}\tau^t : \nabla \vec{u} - C_{2\varepsilon}\rho\varepsilon)$  $\partial_t (\rho \tilde{c}_p \theta) + \nabla \cdot (\rho \tilde{u} \tilde{c}_p \theta) = \nabla \cdot ((\lambda + \sum c_{pk} Y_k \rho (v^t / \sigma_k)) \nabla \theta) + P_\theta + W_\theta - D_\theta,$  $\theta = \overline{T'T'}$   $T = \overline{T} + T'$  $P_{\theta} = 2\rho \sum c_{pk} Y_k \left( v^t / \sigma_k \right) \left( \nabla T \right)^2 \qquad W_{\theta} = -\sum \overline{\dot{\omega}_k' T'} h_{0k}$  $D_{\theta} = C_{g} \rho \sum_{k} c_{pk} Y_{k} \frac{\varepsilon}{k} \frac{\theta}{\theta_{m} - \theta}, \quad \tilde{c}_{p} = \sum_{k} c_{pk} Y_{k}$  $C_{\mu} = 0.09, \quad C_{1\varepsilon} = 1.45, \quad C_{2\varepsilon} = 1.92,$  $\theta_m = \overline{T}^2 / 4.$  C<sub>g</sub> = 2.8.  $k, \varepsilon, \theta$  $\sigma_d = 1, \quad \sigma_t = 0.9, \quad \sigma_k = 1, \quad \sigma_\varepsilon = 1.3.$ Moscow M.V.Lomonosov State University

#### **Chemistry modeling.**

 $O_2; C_n H_m; CO; CO_2; H_2; H_2O; N_2$ 

 $\dot{\omega}_k = \sum \omega_{kj}$  $C_n H_m + \left(\frac{n}{2} + \sigma \frac{m}{4}\right) O_2 \rightarrow nCO + \sigma \frac{m}{2} H_2 O + (1 - \sigma) \frac{m}{2} H_2$  $W_{\theta} = -T' \sum_{k=1}^{B} \sum_{k=1}^{K} h_k^0 \dot{\omega}_{kj}$  $CO + 0.5O_2 \rightarrow CO_2$  $CO_2 + M \rightarrow CO + 0.5O_2 + M$  $A_{j}(T) = \begin{cases} K_{j} \exp\left(-\frac{T_{aj}}{T}\right), T \ge T_{mj} \end{cases}$  $H_2 + 0.5O_2 \rightarrow H_2O$  $H_2O + M \rightarrow H_2 + 0.5O_2 + M$  $T < T_{mj}$ 0,  $\overline{T'A(T)} = \theta \frac{A(\overline{T} + \sqrt{3\theta}) - A(\overline{T} - \sqrt{3\theta})}{2\sqrt{3\theta}}$  $\overline{A(T)} = \frac{1}{6}A(\overline{T} + \sqrt{3\theta}) + \frac{2}{3}A(\overline{T}) + \frac{1}{6}A(\overline{T} - \sqrt{3\theta}).$ Moscow B.V.Lomonosov (State University)

#### **Boundary conditions**

$$\begin{aligned} x = 0, \\ x = x_{i}, r_{i} \le r \le R_{i}: \quad u_{x} = u_{r} = 0, \frac{\partial T}{\partial x} = 0, \frac{\partial Y_{k}}{\partial x} = 0 \quad \begin{array}{c} r = R_{i}, x_{i} \le x \le x_{i+1} \\ r = r_{i}, x_{i-1} \le x \le x_{i} \end{array} i = 1, \dots N - 1, : \quad u_{x} = u_{r} = 0, \frac{\partial T}{\partial r} = 0, \frac{\partial Y_{k}}{\partial r} = 0, \\ r = 0, 0 \le x \le X: \quad u_{r} = 0, \frac{\partial u_{x}}{\partial r} = 0, \frac{\partial T}{\partial r} = 0, \frac{\partial Y_{k}}{\partial r} = 0 \\ k = 0, \quad \frac{\partial \varepsilon}{\partial \vec{n}} = 0, \quad \frac{\partial \theta}{\partial \vec{n}} = 0, \\ k = 0, \quad \frac{\partial \varepsilon}{\partial \vec{n}} = 0, \quad \frac{\partial \theta}{\partial \vec{n}} = 0, \\ C_{\mu} = C_{\mu}^{0} f_{\mu}, \\ C_{1\varepsilon} = C_{1\varepsilon}^{0} f_{1}, \\ C_{2\varepsilon} = C_{2\varepsilon}^{0} f_{2}, \end{array} f_{1} = 1 + \left(\frac{0.05}{f_{\mu}}\right)^{3}, \qquad R_{i} = \frac{k^{2}}{v\varepsilon}, \quad R_{y} = \sqrt{k} \frac{y}{v}, \end{aligned}$$

#### **Turbulent combustion model** validation

A problem was regarded of flame propagation in a tube of constant crosssection filled in with  $CH_3OH + 1.5\alpha(O_2 + 1.6N_2)$ The kinetic mechanism was based on the one suggested by Marinov N.M. (1999) and incorporated 129 elementary stages. **Results were compared with experiments by** Karpov V.P. et al.(1986)

#### **Turbulent combustion model** validation II



#### **Pressure profiles along the axis**



Onset of detonation via

Moscow M.V.Lomonosov State University

#### Deflagration to detonation transition simulation.



t = 1.33

#### **Reaction front velocity**



# Studying the geometrical effect on the onset of detonation

 $\beta_{ER} = \frac{S_{chamb} - S_{tube}}{S_{chamb}} \quad ; \quad \alpha_{ER} = \frac{S_{chamb} L_{chamb} + S_{tube} L_{tube}}{S_{chamb} (L_{chamb} + L_{tube})} \quad ; \quad \alpha_{ER} = 1 - \frac{\beta_{ER}}{1 + A}; \quad A = \frac{L_{chamb}}{L_{tube}}$ 





### The influence of cavities incorporated into the tube along the whole length



### The effect of expansion ratio



#### The effect of expansion ratio

 $\beta_{FR} = 0.40$ 



# The joint effect of expansion ratio and fuel concentration.



#### Self-sustaining velocity versus expansion ratio



#### The effect of fuel concentration (two-chambers in ignition section)



#### The influence of initial gas temperature on the DDT in tubes with 2 fore-chambers



#### **Combustion in detonation engine**

## Detonation wave transmission from thin gap into a

cylinder. Upper part – pressure maps, lower part – temperature maps

# Conclusions

Transition processes between two modes of self-sustainig waves propagation in meta-stable media are essentially controlled by:
geometry of the channel,
fuel concentration,
mixture temperature.