Diffusion in compléex environments:
Models, properties, instruments

Nonergodicity and inhomogeneity...
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A Seck

IV. Ueber Diffusion; eon Dr. Adolf Fick,

Prosector in Zarich.

Die Hydrodiffusion durch Membranen diirfte billig nicht
blofs als einer der Elementarfactoren des organischen Lebens
sondern aach als ein an sich hochst interessanter physika-
lischer Vorgang weit mebr Aufmerksamkeit der Physiker in
Anspruch nehmen als ibr bisher zu Theil geworden ist.

Ann. der Phys. u. Chemie, 96, 9, 59-86 (1855)

Diffusion in water confined by membranes is not only
one of the basic factors of organic life, but is also an
extremely interesting physical process and, as such,
should attract much more attention from physicists
than it has so far.

the diffusion equation

0
—n(X,t) = KAn(X,t
- (X,1) (X,1)




Emergence of normal diffusion

Einstein (1905)
Non-correlated
Postulates:

o)n(x,t) > P(x,t)
1) 3 time interval T < oo, so that{the @
particle’s motion during the twp
consequent intervals is independent
I1) The displacements S during
subsequent t-intervals are
identically distributed. < CStationary increments >
For unbiased diffusion: @(s) = ¢@(-9)

ll1) The second moment of S exists Essentially, a

2= T82¢(S)ds < 00 Random Walk Model
e (1880, 1900, 1905x2)




Motion as a sum of small independent increments: X(t) = Z S,
i=1

mean free path mean relaxation time
1/2 1/2
A=(s]) roc A/(V7)

i o
<X2<t>>=<(i ]> >§< t

the central limit theorem (for independent steps)
X

P(x,t) = MMQV”%%}M;j

with K o <V2>Z’ =/r



RW models vs. continuum models

V(1)

v(0)

0P >

I ~G.l. Taylor, Diffusion by continuous movements, Phil.

— 7T m Trans. Roy. Soc. Lond. A 223, 289 (1923).



Autocorrelation functions

Discrete Continuous
X, = isi X(t) = j v(t")dt'
o)-(Ssm )30, (- e

tt
HC(t',t")dt'dt"
00

Stationary velocity process — X-process with stationary increments

C(t',t") =C(jt-t")), j:c:(t')dt'< 0

2
<X (t)> = dDt Stationarity of increments
I N Stationary (equilibrium) state
D= Io C(t)dt of the bath




Langevin (1908)

“infinitely simpler...”,
but equivalent approach

d*x
mos =ty Fg(t)l
bg

Energy gain Energy loss
via noise via friction

* The mean displacement relaxes
exponentially to its equilibrium value.

*The distribution relaxes to Boltzmann distr.

*The velocity correlations in equilibrium
decay exponentially

Ornstein-Uhlenbeck Process
(linear relaxation ) ——) Onsager

overdemped motion



FEATURES

An increasing number of natural phenomena do not fit
into the relatively simple description of diffusion developed by Einstein a century ago

Anomalous diffusion

spreads its wings o).«

a # 1

Joseph Klafter and Izor M Sokolov

AS ALL of us are no dounbt aware, this
vear has been declared “world year of
physies” to celebrate the three remark-
able breakthronghs made by Albert
Eimnstein in 1905, However, 1t 15 not so
well known that Einsteins work on
Browmanmotion — the randommotion
of tiny particles first observed and m-
veshigated by the botamst Robent Brown
in 1827 — has been cited more times in
the saenthc lterature than his more However, Fick’s approach was purely
larmous papers on special relativity and phenomenologeal, based on an anal-
the quantum nature of light. Inaseries  5i5e behaviour- albatrosses fybythe ulesof 28 With Fourier's heat equation — it
of publications that meluded his doc-  anomalous diffusion. ook Einstemn o dertve the difflusion
toral thesis, Emstein derved an equa- equation from hrst princples as part
|'i|"l|'| rl"l'l'F%'l'l"ﬂ'-'l'l'i'.'l'l'l '|'|'|I"l|'il"l|'| I-'I'I"II'I'I|'|'|'i|'-|'l"r\-|:l"l"l'|'l'il"'I'l'l-il'll'"i'l'lll""l-\'. =1 rl"'.'ll I"lr I'I'il-\'. 1'|'I"I'|'I-¢' i1l .IE.'I'I"I'\\'I'I'i'.l'I'I |'|'|I"l|'il"l'|'| Fll"" I"I'il"l |I'|'i'\-|: I"I'I.' '.1'\-|:'\-i.|||'|'|'i|'ll'|'

n Inving orgamsms. In 1855 Fick pub-
lished the famous diffusion equaton,
2 which, when written in terms of prob-
= ahility, is c/ o = Dl o, where p gives
" the probability of finding an object at
acertain position x, at a time £ and £1s
the diffusion coetheent. Fick went on o
show that the mean-squared displace-
ment of an object undergomg diffusion

15 240,

PasrnEanlin
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PRL 96. 098102 (2006) PHYSICAL REVIEW LETTERS 10 MARCH 2006

Physical Nature of Bacterial Cytoplasm

[do Golding and Edward C. Cox
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
(Received 10 November 2005; published 10 March 2006)

We track the motion of individual Auorescently labeled ml
find that the motion is subdiffusive, with an exponent that is ro
disruption of cytoskeletal elements. By modifying the parame
cell, we are able to examine the possible mechanisms tha
eeneciallv the effect of macromolecular crowding. We als
gene regulation, in par
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EERNAS

Ergodic and nonergodic processes coexist
in the plasma membrane as observed
by single-molecule tracking

Aubrey V. Weigel®, Blair 5imon®, Michael M. Tamkun®?, and Diego Krapf**

*5chool of Biomedical Engineerin
State University, Fort Collins, CO
Department of Biochemistry anc

Edited* by lennifer Lippincott-Sch
Diffusion in the plasma mem

display anomalous dynarmics.
this diffusion pattern remain:

A

Fig. 1. Owverlay image of GFP-tagged Kv2.1 clusters and individual QDs.
Kw2.1 clusters are shown in green and QD-tagged channels in red. The
trajectories of (4) a clustered and (B) a nonclustered (free) Kv2.1 channels
are shown. Interestingly, the nonclustered channel ignores the compartment
perimeters and the channel travels freely into and out of a cluster. Scale bars:
1 pm.



Experimental techniques

* Ensemble properties:

* measurements of mass transport, current or polarization

 FRAP
*Single-particle propertries:

*Trajectories

* single-particle tracking
*First passage times

 FRET
*Sojourn times

* FCS .

<

“Measure and fit!”



Physical models

Possible sources of anomalous subdiffusion:

. CTRW with power-law waiting times as arising from

random potential models (energetic disorder, trapping g :><

environment)

. Diffusion on fractal structures, e.g. on percolation M- ><
clusters (geometrical disorder, or labyrinthine

environment)

. Temporal correlations due to slow modes (typical for

viscoelastic environments). NM- ><

The three cases correspond to different models and are

described using different theoretical instruments.



Mathematical instruments
CTRW: Fractional diffusion (or Fokker-Planck) equation, or a
couple of Langevin equations describing the evolution of the
coordinate and of the clock time as functions of the operational
time (Fogedby’s approach).

Fractals: Percolation and other labyrinthine models. No equation
known. Often approximately described by diffusion equations
with distance-dependent diffusion coefficient.

fBm (viscoelastic models): Generalized (integrodifferential )
Langevin equation. No Fokker-Planck analogue known.

sBm: “Time-dependent diffusion coefficient taken seriously”:
Diffusion equation with time-dependent diffusion coefficient.
Often used by experimentalists for fitting of anomalous diffusion
of unclear origin.



Subdiffusion: In disordered solids...
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Explanation: Multple trapping and CTRW

E

p(E;)cexp(E, /E,)
r. =71,exp(—E, /k;T) pPE)

|,
O A
The waiting-time distribution between the two jumps (1) oc t

Diffusion anomalies for 0 < o < 1: the mean waiting time diverges!

Mean number of steps N(t) oct® Mean rate of steps M (t) = 2—? oc t*7!

Mean squared displacement <x (t)> ct® with a <1



The Subordination

Transition to continuum:

P(x,1) = iwu,nm (t)

PDF of the particle’s
position after n steps
(say, a Gaussian)

Probability to make
exactly n steps up to
the time t

Pt = [ W (%,2)T (z,t)d7

operational time



| } clock time t
1 o I p—

operational time n

nl(tz) — "(f;)




Short way to the resuilt:

* Independent steps => <X2 (t)> =a’(n(t))

Steps follow inhomogeneously in the physical time t.

*The number of steps up to the time t may be calculated using the
renewal approach:

no steps up to time t: ¥, (1) =1- _‘-W(t )dt'

1 step up to time t: 1, (1) = J.W(t ) 2, (t=t)dt'

n steps up to time t: %, (1) = j@”(t ) 2o (t—1)at!

(V)= X nz, (0=




~ 1- W(U) ~n
After Laplace-transform: Zn(U) = U y(u)

n=0 n=0 d
-y~ d Gonpy o W)
IR AT M )
w(t)oct™ ™ yUu)=1-cu® +...
‘(n(t)) o t“% (A(u))=cu™"™

The the FDE can be derived from the properties of the parent process
and those of subordinator (operational time)



Geometric disorder: Percolation
cluster at criticality: Markovian
model with non-11d steps

Fig. (4). The measurement system: 3D translational anomalous
diffiisive motion within the observation velume AV = (.14 {fL {in
pink color). Simulation steps n=10000.

Current Pharmacentfical Biotechnology, 2010, 11, 527-543

Meaningful Interpretation of Subdiffusive Measurements in Living Cells
(Crowded Environment) by Fluorescence Fluctuation Microscopy

Gerd Baumann'~, Robert F. Place™ and Zeno Pﬁldes-Papl)l""*



Non-interacting particles in a random
potential

n, = Z (Wij n i W ji n, ) — %
.ri.,'h Ee BTN

detailed balance

0 0 :
w;n; =w;n;  with




W.. ex B  Superdiffusion 1s impossible:
D’ =3 EM ¢ enumerator never diverges in

E finite dimensions and the
{8

T denominator never vanishes

Two (and only two) sources of subdiffusion in our system:
. E, . .
* Either <exp(— ﬁj> diverges (“strong energetic disorder™)

* or the percolation concentration in the system 1s unity, e.g. on the
percolation threshold, in 1d, or on a finitely ramified fractal
(“structural disorder”). No anomalous diffusion in random barrier
models ind > 1.

* both can apply simultaneously (“subdiffusion of mixed origins”)

e.g. in 1d barrier model
F. Camboni & IMS, PRE in press



Electric analogy

. n, ni
n; :Z£gij _(J)_ i _oj
j | n;

. itn—o Zj:(g.,—q—g,.]

| activity ¢ |

Electric analogy:
random resistor - capacitor model

‘conductivity‘ ‘0 =0 ji‘

1 dt¢ Z(Glj¢ O-jl |)

Fig 25 Random resistor network, with each node connected to the
ground by random capacitors

(From Bouchaud & Georges)

n; /9

conserved

‘ capacity ‘

‘ potential of site I ‘

N,
— / ¢; non-conserved




Calculating D*

.1
g :FZgij[é/j _gi]
In stationary state

Zgij[‘gj—éﬂ]:O

In the first / last layer in the
system ¢; = ¢, resp. &; =g,

<n|>:§|<ni0>; <nr>:§r<ni0>
well-mixed layers with infinitely i
strong bonds to the interior of the | = Z Jy =W <J i >5urface

i
system. In these layers all ¢; are <surface
the same.




Somewhat stronger property

Let {J} be the connected neighbors of site I. In a stationary state
4 :Zgijgj/zgij
j j

(1.e. £ 1s the weighted arithmetic mean of £ j)
¢, and £, are fixed, and L —

= ¢ is slowly varying (“smooth”) in each connected

environment of site I.  Only large connected parts of the
system contribute to macroscopic
diffusion / conductivity

In each such part, due to smoothness of
activities, the local activities and the
local equilibrium concentrations
decouple.




Denominator

The denominator j exp(— %j P(E)dE may diverge for p(E) growing

—00

slower than p(E) ~ exp(— E/ kT) for large (negative) E.

The denominator does not vanish for any proper PDF p(E).

‘ median value of p(E) ‘
#

Texp(——j p(E)dE = j exp(—kij (E)dE + j exp(— kE jp(E)dE

= exp(— E—]EJM p(E)dE|+ T exp(— Ej p(E)dE|> lexp(— E—Mj
kKT ) : kT 2 kT

mean value theorem non-negative




Enumerator

Some results from percolation theory:
» The mixture of resistors of (same) finite conductivity (prob. p) and

insulating bonds (prob. 1—p) possesses zero conductance below the
percolation threshold p, and finite (non-zero) conductance above it.

Mathematically proved for Bernoulli case, generally believed even for short-range
correlated cases (RG).

J.T. Chayes and L. Chayes, Comm. Math. Phys. 105, 133 (1986)

Above the percolation threshold the system homogenizes for any distribution of 11d
conductivities

P. Mathieu, J. Stat. Phys. 130, 1025 (2008)

* p. does depend on correlations between the bonds

*The mixture of resistors of (same) finite conductivity (prob. p) and
superconducting bonds (prob. 1-p) possesses finite conductance
above the percolation threshold p.; =1— p.and infinite conductance
below it.



Two-port systems

The input conductivity 1s a non-decaying function of load conductivity

A

Black
box port 2 ‘
212221

\/ load g
Z22 + g

(in our case all impedances are real!)

(\

Lin =241 —
2,20, z,,20, z,,2,,-2,,Z,, 20 non-negative heat production

Z,, =1, reciprocity theorem as a consequence of Kirchhoff’s laws
—> z;, monotonically non-decaying function of g.



Consequences

The total conductance is a non-decaying function of the
conductivity of each bond.

Fix some  <1- p,and remove the fraction g of all bonds starting
from the ones with smallest conductivities, up to some ... The
remaining system still percolates and possesses the conductance
which 1s larger than the conductance of the percolation system
with p =1 — g where all conductivities are put to 6,,.. The overall
system homogenizes.

—> The enumerator can only vanish if p, =1 (i.e. at the
percolation threshold, in 1d or on a finitely ramified fractal)

In the models of particles’ motion in static random potentials
there are two (and only two) sources of anomalous diffusion.



Other relevant models: Polymers

0.0

log(<AR(1)>/52)

-0.57

-1.0/

-1.5

-2 -1 0
Slow modes: Subdiffusion in a Rouse polymer chain.
Each mode normally diffusing (OU-process).
More complex models: polymer networks,
intramolecular interactions etc.

The whole process 1s a non-Markovian process
with stationary arguments



« Anomalous iIs normal

* Happy families are all alike; every
unhappy family is unhappy in its own
way



Position-position correlation function

199 = (XOX() [~

Displacement during the time interval between S and t (t > S)

da0x@ﬂ$<%a»+@8@»4!lili}

Anomalous diffusion with stationary increments: <X2(t)> = Kt“

(X -x®)F)=(x(t-s)

P(1,s) = g[’[“ + 8% — ‘t — S‘a] — fractional Brownian Motion

No age,
no aging!

<[x(t ~t,)- x(s—to)]2> = (X(t—t,—s+1)) 1 (x*(t—s))

Process starting at {,




Processes with uncorrelated increments

‘¢(t, $) = (X(DX(S)) = (X(5)X(S)) + (AX(t —$)X(5)) = <x@

Displacement during the time interval

between Sand t (t > 9) /

(x®-x)F) =<x2<t>>+<x2<s>><x2<t)>—<x2<s>>

Anomalous diffusion: <X2('[)> = Kt

<[x(t) _ x(s)]2> — Kt” — Ks”
Process starting at t,,
<[X(t _to) o X(S _to)]2> = K(t _to)a _ K(S _to)a

Age s — t, at beginning of observation can be determined for « #1



Resampling of CTRW

p(E;) < exp(E;/E)
V ' VV v V v r. =7,exp(—E; /k,T) pP&)

CTRW as a process with dependent, uncorrelated increments

<l 1 I

0 {

.IIII._[_[_HIIIII.IIIIII?IIII.JJ_>




Aging properties in CTRW
In normal diffusion: <[X(t )—X(t,) 2> <X2(t > 2D(t, -1,)
Explanation: Since <n(t)> t/z, <n t2)> <n(t )> <n(t —t )>

In CTRW ([x(t,) - x(t)]? >oc<n> (n(t))=(n))

¥

)

TR TR RS

0y t
;, ( t; t,—t >>t
tf‘ £t <<,

—— —ﬂ

The process ages.



Moving time average
(n(t) = At <x2(t)> =a’*(n(t)), .

\ﬁ/_/
(xt)-xt)F) =a[(n,), —(ne)),,]

*Ensemble average of moving time averages
= moving time average of ensemble av.

<<x2(t)>T>enS=a2le (n+) - n(t)ens]dt' A

—

)" —t |dlt

‘For t<<T one gets: <<x2(t)>T> =a’AT* 't

ens

*Prediction: time dependent mean diffusion coefficient

K (T)=a>AT /2]




Moving time averages in CTRW

160 .
140} .
<x2(t)> -—tO'B,,»
e L
120} SO i 1
Ensemble-averaged behavior
100} \\>@ -
m) o moving time-averaged behavior
g 8o0r ’ in a single realization
60 ]
<x2(t)> ~t
401 T -
201
Nl L I 1 1 1 1
0 50 100 150 200 250 300 Ensemble-averaged
Time moving time-averaged behavior

Some numerical results for the case w/(t) ~t™°

A. Lubelski, IMS, J. Klafter, PRL 100, 250602 (2008)
Y. He, S. Burov, R. Metzler and E. Barkai, PRL 101, 058101 (2008)



PRL 103, 038102 (2009)

week ending

PHYSICAL REVIEW LETTERS 17 JULY 2009

Elucidating the Origin of Anomalous Ditfusion in Crowded Fluids

Jedrzej) Szymanski and Matthias Weiss

Cellular Biophvsics Group (BIOMS), German Cancer Research Center, Im Newenheimer Feld 280, D-69120 Heidelberg, Germany
(Received 12 December 2008; published 15 July 2009)
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FIG. 2. Mean square displacement {r(f)?) for obstructed diffu-
sion (36% obstacle concentration), FBM, and CTEW (from top).
Open symbols denote the ensemble-averaged MSD, and cross-
like symbols denote the time-averaged MSD for a representative
trajectory. While both approaches coincide for FBM and ob-
structed diffusion, the curves differ for the CTRW due to weak
ergodicity breaking. For better visibility, MSD curves for FBM
and obstructed diffusion have been shified upwards (factor 30
and 250, respectively). Full lines scale as (r{f)?) ~ “%2; the
dashed line is linear in time.



Properties of the most popular models

of subdiffusion

Environment | Model Correlations Aging prop. | Moving PDF

time av.
trapping CTRW | none aging normal non-Gauss.
labyrinthine | fractal antipersistent | equilibr. anomal. non-Gauss.
“changing” sBm none aging normal Gaussian
viscoelastic | fBm antipersistent | equilibr. anomal. Gaussian




The (unequal) twins
Y. Meroz, IMS and J. Klafter, PRL 107, 260601 (2011)

i i i [ i
P
X
>
G. H. Weiss and S. Havlin, K. W. Kehr and R. Kutner,

Physica A 134, 474 (1986) Physica A 110, 535 (1982)



RWRW, single file diffusion and
freely jointed chain

A
O
O
O
A

RWRW as intermediate
Regime of reptation

/

).

n-th kink ., .+ hy

*

Q)
AR

Single file diffusion and 1d kink-flip-model

<x2 (t)> oc t!/?



The PDFs
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The FPT density
startat X =0 /\/\/\ﬁnish at X

\J V >
10° ——
R asymptotics comb |
— 21X -
f (t) E | | t—5/4 |
Lo ['(—-1/4)
E? 107
asymptotics RWRW _
I X2 ]
1078 _ f (t) = O64ﬁt3/2 ”‘_
10°

10° 10°



Aging properties

=1 | 1., <x2(t)|ta>=<[x(ta+t)—X(ta)]2>

MSD

t>0 t

There are three
curves here!
RWRW

t,=0

cCOMB

t,=1000 stationary

comb projections

non-stationary

10° 10" 10? 10° 10"
time steps



sBm as a mean filed approximation for

CTRW
0 o

—P(x,t)= .D;*K =—P(x,t
ot (x,t)= (D, PYE (X,t) N >> 1 random walkers

Pooling: A Poisson process with A(t) oc M (t) oc t*”

PDF of the CM coord. of N >> 1 random walkers

0 0*
—P(x,t) = Kt*'—
ot (%) oX*

P(x,t) ‘ Same for Fractal / {Bm ‘




Distinguishing fBm/Percolation

Use space-filling properties
(spatial inhomogeneity of a fractal substrate)

n —# of cells visited
S, — # of different cells
visited

Test statistics in 2d:
S,(1)

! > <r’)>
(together with Yossi Klafter
And Yasmine Meroz)

)
N
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FIG. 1: (ecolor online) Participation function divided by the
MSD (Sn/MSD{n)) temporally averaged with a moving win-
dow of 0 <2+ <¢ 150 for 5 trajectories created with fBm (blue,
flatten out) and 5 trajectories created with a EW on a percola-
tion cluster (red, with a clear negative slope). All trajectories
are 40000 time steps long.
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FIG. 2: {color online) Distribution of 4, the Sn/MSD slope,
of 400 fBm trajectories (blue peaks on the right) and 400
trajectories of EW on a percolation cluster (red peaks on the
left). The trajectories are temporally averaged once with a
time window of TMAX=50 time steps (solid line), and once
with TMAX =550 (dashed line). It is immediately obvious
that the fBm distribution stayvs centered at the expected value
of 0, while the percolation distribution starts far off (== —0.15
for TMAX=50) converges to the expected value of —0.037.
This convergence as a function of TMAX is demonstrated in
the inset, where the expected value is shown as a guide for
the eye. Moreso, it is elear that the two distributions are well
divided for small averaging time windows.



Take home messages

Anomalous is normal

Happy families are all alike; every unhappy family
IS unhappy In its own way

Knowledge of the PDF as a function of time (and
even of an equation for this function) is not too
much

The most important distinction has to be made
between models with stationary increments and
models with uncorrelated increments. The rest
are prefactors!

Models of mixed origin make the situation even
more complex



Of course, this is only a first
approximation...
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