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Diffusion in complex environments:
Models, properties, instruments

Nonergodicity and inhomogeneity…
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• Normal diffusion
• Subdiffusion: Experiments, models, and 

mathemaical instruments
– CTRW
– Percolation
– Slow modes of multiparticle models

• Aging and ergodicity breaking
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• Conclusitons



Ann. der Phys. u. Chemie, 96, 9, 59-86 (1855)

Diffusion in water confined by membranes is not only 
one of the basic factors of organic life, but is also an 
extremely interesting physical process and, as such, 
should attract much more attention from physicists 
than it has so far.
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Emergence of normal diffusion
Einstein (1905)

Postulates:
0)
i) ∃ time interval τ < ∞, so that the
particle’s motion during the two 
consequent intervals is independent
ii) The displacements s during 
subsequent τ-intervals are 
identically distributed. 
For unbiased diffusion:
iii) The second moment of s exists
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Essentially, a 
Random Walk Model
(1880, 1900, 1905×2)

Stationary increments

Non-correlated 
increments
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RW models vs. continuum models
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G.I. Taylor, Diffusion by continuous movements, Phil. 
Trans. Roy. Soc. Lond. A 223, 289 (1923).



Autocorrelation functions
ContinuousDiscrete
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Stationary velocity process → x-process with stationary increments
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Stationary (equilibrium) state 
of the bath



Langevin (1908)
“infinitely simpler…”,

but equivalent approach
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Heat bath

Energy gain
via noise

Energy loss
via friction

Ornstein-Uhlenbeck Process
(linear relaxation )           Onsager

overdemped motion

• The mean displacement relaxes
exponentially to its equilibrium value.
•The distribution relaxes to Boltzmann distr.
•The velocity correlations in equilibrium 
decay exponentially
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Seisenberger, G., Ried, M.U. Endreß, T., Büning, H., Hallek, M. & Bräuchle, C., Real-time single-molecule imaging of the 
infection pathway of an adeno-associated virus. Sience. 294, 1929-1932 (2001)







Experimental techniques

• Ensemble properties:

• measurements of mass transport, current or polarization
• FRAP

•Single-particle propertries:

•Trajectories
• single-particle tracking

•First passage times
• FRET

•Sojourn times
• FCS 

“Measure and fit!”



Physical models

Possible sources of anomalous subdiffusion:

1. CTRW with power-law waiting times as arising from 
random potential models (energetic disorder, trapping 
environment) 

2. Diffusion on fractal structures, e.g. on percolation 
clusters (geometrical disorder, or labyrinthine 
environment)

3. Temporal correlations due to slow modes (typical for
viscoelastic environments).

The three cases correspond to different models and are 
described using different theoretical instruments.

SM:  i)

M:   ii)

NM:  ii)



CTRW: Fractional diffusion (or Fokker-Planck) equation, or a 
couple of Langevin equations describing the evolution of the 
coordinate and of the clock time as functions of the operational
time (Fogedby’s approach).

Fractals: Percolation and other labyrinthine models. No equation 
known. Often approximately described by diffusion equations 
with distance-dependent diffusion coefficient.

fBm (viscoelastic models): Generalized (integrodifferential ) 
Langevin equation. No Fokker-Planck analogue known.

sBm: “Time-dependent diffusion coefficient taken seriously”: 
Diffusion equation with time-dependent diffusion coefficient. 
Often used by experimentalists for fitting of anomalous diffusion 
of unclear origin.

Mathematical instruments



Subdiffusion: In disordered solids…

The sum of slopes
is always 2

H. Scher and E. Montroll, 1975 



Explanation: Multple trapping and CTRW
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The Subordination

PDF of the particle’s
position after n steps

(say, a Gaussian)

Probability to make
exactly n steps up to

the time t
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Short way to the result:
• Independent steps  => 
•Steps follow inhomogeneously in the physical time t.
•The number of steps up to the time t may be calculated using  the 
renewal approach:
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The the FDE can be derived from the properties of the parent process 
and those of subordinator (operational time)



Geometric disorder: Percolation 
cluster at criticality: Markovian
model with non-iid steps

Other relevant models: Percolation



Non-interacting particles in a random 
potential
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• Superdiffusion is impossible: 
The enumerator never diverges in 
finite dimensions and the 
denominator never vanishes

Two (and only two) sources of subdiffusion in our system:

• Either                          diverges (“strong energetic disorder”)

• or the percolation concentration in the system is unity, e.g. on the 
percolation threshold, in 1d, or on a finitely ramified fractal 
(“structural disorder”). No anomalous diffusion in random barrier 
models in d > 1.
• both can apply simultaneously (“subdiffusion of mixed origins”)
e.g. in 1d barrier model
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F. Camboni & IMS, PRE in press



Electric analogy
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Electric analogy: 
random resistor - capacitor model

potential of site i

conductivity

capacity

(From Bouchaud & Georges)
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Calculating D*
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well-mixed layers with infinitely 
strong bonds to the interior of the 
system. In these layers all      are 
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Somewhat stronger property
Let {j} be the connected neighbors of site i. In a stationary state 
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are fixed, and 

⇒ is slowly varying (“smooth”) in each connected 
environment  of site i.
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Only large connected parts of the 
system contribute to macroscopic 
diffusion / conductivity
In each such part, due to smoothness of 
activities, the local activities and the 
local equilibrium concentrations 
decouple. 



Denominator

The denominator                                      may diverge for          growing 

slower than                                    for  large (negative) E.
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Enumerator

Some results from percolation theory:
• The mixture of resistors of (same) finite conductivity (prob. p) and 
insulating bonds (prob. 1−p) possesses zero conductance below the 
percolation threshold pc and finite (non-zero) conductance above it.
Mathematically proved for Bernoulli case, generally believed even for short-range 
correlated cases (RG).
J.T. Chayes and L. Chayes, Comm. Math. Phys. 105, 133 (1986)
Above the percolation threshold the system homogenizes for any distribution of iid
conductivities 
P. Mathieu, J. Stat. Phys. 130, 1025 (2008)
• pc does depend on correlations between the bonds
•The mixture of resistors of (same) finite conductivity (prob. p) and 
superconducting bonds (prob. 1−p) possesses finite conductance 
above the percolation threshold                   and infinite conductance 
below it.

c
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Two-port systems
The input conductivity is a non-decaying function of load conductivity

Black
boxport 1 port 2

load g
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(in our case all impedances are real!)
0,0,0 211222112211 ≥−≥≥ zzzzzz non-negative heat production

2112 zz = reciprocity theorem as a consequence of Kirchhoff’s laws
⇒ zin monotonically non-decaying function of g. 



Consequences
The total conductance is a non-decaying function of the 
conductivity of each bond.
Fix some                and remove the fraction q of all bonds starting 
from the ones with smallest conductivities, up to some σmax. The 
remaining system still percolates and possesses the conductance 
which is larger than the conductance of the percolation system 
with p = 1 − q where all conductivities are put to σmax. The overall 
system homogenizes.

⇒ The enumerator can only vanish if             (i.e. at the 
percolation threshold, in 1d or on a finitely ramified fractal)

cpq −<1

1=cp

In the models of particles’ motion in static random potentials 
there are two (and only two) sources of anomalous diffusion.



slope 1/2

Other relevant models: Polymers

Slow modes: Subdiffusion in a Rouse polymer chain.
Each mode normally diffusing (OU-process).
More complex models: polymer networks, 
intramolecular interactions etc. 

The whole process is a non-Markovian process 
with stationary arguments



• Anomalous is normal

• Happy families are all alike; every 
unhappy family is unhappy in its own 
way



Position-position correlation function
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Displacement during the time interval between s and t (t > s)  

Anomalous diffusion with stationary increments:
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no aging!



Processes with uncorrelated increments
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Displacement during the time interval 
between s and t (t > s)  
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Age s – t0 at beginning of observation can be determined for 1≠α



Resampling of CTRW
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Aging properties in CTRW
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Moving time average

•Ensemble average of moving time averages 
= moving time average of ensemble av.
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Ensemble-averaged 
moving time-averaged behavior

Ensemble-averaged behavior

moving time-averaged behavior
in a single realization

Moving time averages in CTRW

8.1~)( −ttψSome numerical results for the case
A. Lubelski, IMS, J. Klafter, PRL 100, 250602 (2008)
Y. He, S. Burov, R. Metzler and E. Barkai, PRL 101, 058101 (2008)





Properties of the most popular models 
of subdiffusion

Environment Model Correlations Aging prop. Moving 
time av.

PDF

trapping CTRW none aging normal non-Gauss.

labyrinthine fractal antipersistent equilibr. anomal. non-Gauss.

“changing” sBm none aging normal Gaussian

viscoelastic fBm antipersistent equilibr. anomal. Gaussian



The (unequal) twins
Y. Meroz, IMS and J. Klafter, PRL 107, 260601 (2011)

x

G. H. Weiss and S. Havlin, 
Physica A 134, 474 (1986)

K. W. Kehr and R. Kutner, 
Physica A 110, 535 (1982)



RWRW, single file diffusion and 
freely jointed chain

n-th kink
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RWRW as intermediate
Regime of reptation

Single file diffusion and 1d kink-flip-model



The PDFs



The FPT density
start at x = 0
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Aging properties

There are three 
curves here!

ta=0

ta=1000

ta=3000

ta> 0
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sBm as a mean filed approximation for 
CTRW
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Distinguishing fBm/Percolation
Use space-filling properties 
(spatial inhomogeneity of a fractal substrate)

n – # of cells visited
Sn – # of different cells 

visited

Test statistics in 2d:
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(together with Yossi Klafter
And Yasmine Meroz)





Take home messages

• Anomalous is normal
• Happy families are all alike; every unhappy family 

is unhappy in its own way
• Knowledge of the PDF as a function of time (and 

even of an equation for this function) is not too 
much

• The most important distinction has to be made 
between models with stationary increments and 
models with uncorrelated increments. The rest 
are prefactors!

• Models of mixed origin make the situation even 
more complex



Of course, this is only a first 
approximation...
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