

Magnetic Reconnection and Radiation in Astrophysics Dmitri Uzdensky

(University of Colorado, Boulder)

In collaboration with: B. Cerutti, G. Werner, M. Begelman (Colorado)

Ginzburg Conference on Physics Lebedev Physics Inst., Moscow, June 1, 2012.

<u>OUTLINE</u>

- Introduction to reconnection
- *Radiative* magnetic reconnection in astrophysics.
- Astrophysical illustrations:
 - Extreme particle acceleration and Crab Nebula γ-flares.
 - Strong *anisotropy* of particle acceleration and focusing and rapid variability of radiation in relativistic pair reconnection.
 - Strong synchrotron cooling in pulsar magnetosphere recn.
 - (Giant flares in **magnetar** [SGR] magnetospheres)
 - (GRB prompt emission)
- Summary

Introduction: Magnetic Reconnection

- <u>Magnetic reconnection</u> is a rapid rearrangement of magnetic field topology
- Reconnection often results in violent <u>release of magnetic</u> <u>energy</u> and its conversion to:
 - electron and ion heating
 - bulk kinetic energy
 - non-thermal particle acceleration

<u>Traditional Magnetic Reconnection in</u> <u>the Solar System</u>

Radiation in Astrophysical Reconnection

- In conventional reconnection studies (space/solar/ laboratory), the plasma consists charged particles (*e*-ns & ions) --- <u>no photons!</u>
- In contrast, in many *astrophysical* situations energy density is so high that <u>radiation</u> strongly affects reconnection:
 - Radiative cooling;

- Radiative drag on rec. outflow;
- Radiation pressure;
 Compton-drag resistivity.
- In addition, radiation is our only *observational diagnostic* into astrophysical reconnection.
- Radiative magnetic reconnection is a young subject:

(Dorman & Kulsrud 1995; Lyubarsky 1996; Jaroschek & Hoshino 2009; Giannios et al. 2009; McKinney & Uzdensky 2010; Medvedev 2010; Uzdensky & McKinney 2011; Uzdensky 2011; Nalewajko et al. 2011; Cerutti et al. 2012ab; Takahashi et al. 2012)

Reconnection in Astrophysics

- Pulsar magnetospheres, winds, PWNe
- AGN (e.g., blazar) jets, radio-lobes
- Gamma-Ray Bursts (GRBs)
- Magnetar flares

Gamma-Ray Flares in the Crab

 $\log \epsilon [eV]$ September 2010 AGILE/FERMI γ -flare

Observational constraints:

- Flare duration: $\tau = 1 \text{ day} --> l \sim 3 \times 10^{15} \text{ cm}$
- Photon energy: > 100 MeV --> $\gamma_9 \sim 3 B_{-3}^{-1/2} PeV !!$
- Isotropic flare energy: $\mathcal{E} \sim 4 \times 10^{40} \text{ erg}$

Main Problem: synchrotron emission > 100 MeV challenges classical models of acceleration

- Maximum electron energy is limited by radiative losses:
- Accelerating electric force: $f_{acc} = eE$ Radiation reaction force: $f_{rad} = 2/3 r_e^2 \gamma^2 B^2$ $f_{acc} = f_{rad} \rightarrow \gamma_{max}$
- Synchrotron photon energy: $\epsilon_{max} = 3/2 \gamma_{max}^2 \hbar \omega_c = 160 \times (E/B) MeV$
- In classical acceleration mechanisms: $E < B \rightarrow \epsilon_{max} < 160 \text{ MeV}$

(e.g., de Jager et al. 1996; Lyutikov 2010) > the flares challenge classical acceleration theories !

Our solution: (Uzdensky, Cerutti, & Begelman 2011; Cerutti et al 2012a)

- Relax $E < B_{perp}$ assumption !
- Impossible in ideal MHD $(E + v \times B/c = 0)$
- **Reconnection layers** are a natural place for this to happen.

MAIN IDEA

(Uzdensky, Cerutti, & Begelman 2011; Cerutti et al. 2012; also Kirk 2004)

- Energetic (PeV) particles on relativistic Speiser orbits:
 - accelerated by reconnection E_z in z-direction;
 - confined to reconnection midplane by reversing reconnection magnetic field B_x .
- Test-particle calculations: ultra-relativistic particles focus deep into a thin fan beam along the layer.

- Deep in the layer, *B* is small and synchrotron radiation reaction is reduced.
- Particles can reach higher energies and emit photons with $\varepsilon > \varepsilon_{sync,*} = 160 \text{ MeV}$

Test particle population study: Application to Crab Nebula flares (Cerutti et al. 2012)

Continuous particle injection + synchrotron cooling during flare.

 10^{8}

 10^{-7}

 10^{-8}

 10^{-6}

 10^{-10}

 10^{-11}

10-12

 10^{-13} 10^{7}

≈ 4×10⁸

 $\gamma^{2}_{out} dN/d\gamma_{out}$ [Arbit. Units]

The particles pile up at the maximum energy available ≈ monoenergetic

Spectral Energy Distribution (photons)

Negligible Inverse Compton emission

<u>Anisotropy of Particle Acceleration and Radiation</u> <u>in Relativistic Pair Reconnection</u> (Cerutti, Werner, Uzdensky, & Begelman 2012)

- How do we describe accelerated particle population?
 - Previous numerical studies focused only on <u>energy</u> distribution...
 - New Q: what is the *angular distribution* of accelerated particles?
 - This is important because relativistic particle anisotropy → anisotropy of observable radiation...
- How does a reconnection look like, literally?
 - what are (prompt) radiative signatures of reconnection, as seen by an <u>outside observer</u>:
 - observable photon spectrum;
 - light curve

<u>Particle anisotropy in PIC simulations</u> of relativistic pair reconnection (*Cerutti et al. 2012*)

<u>Main result</u>:

energetic particle population is highly anisotropic!

 Particle anisotropy is energydependent: *stronger focusing for highest energy particles*.

Synchrotron emission anisotropy in relativistic pair reconnection (Cerutti et al. 2012)

d $3.5E+03 < \nu/\nu_0 < 5.6E+03$

Astrophysical implications:

- flare energetics;
 - flare statistics;
 - different from traditional achromatic Doppler.

Rapid emission variability in

relativistic pair reconnection (Cerutti et al. 2012)

Energetic particles form highly focused beams that sway from side to side in the reconnection layer midplane.

<u>Rapid emission variability in</u> relativistic pair reconnection (Cerutti et al. 2012)

Swaying beams create rapid variability of radiation seen by external observer.

Simulated high-energy emission light curve

<u>Radiative reconnection in pulsar</u> <u>magnetosphere (at r ~ R_{LC}):</u>

- Strong prompt synchrotron cooling should dominate reconnection energetics in pulsar (e.g., Crab) magnetosphere near Light Cylinder (LC).
- Pressure balance + heating/cooling balance
 + Ampere's law yield:
 - − T ≈ rad. reaction limit: γ_{rad} ~ 3 x 10⁴, T≈ 10 GeV;
 - n = $B^2/(16 \pi T) \approx 10^{11} 10^{12} \text{ cm}^{-3}$;
 - $\delta \approx \rho_c(\gamma_{rad}) \approx 10 100 \text{ cm}.$

(for $B_{LC} \approx 10^6 \text{ G}$)

<u>Reconnection in magnetar</u> magnetosphere and SGR Flares

- <u>Magnetars</u>: isolated neutron stars with Peta-Gauss fields.
- <u>Soft Gamma Repeaters (SGRs)</u>: magnetars exhibiting powerful (up to $10^{44} 10^{46}$ ergs in ~ 0.3 sec) γ -ray flares.

Reconnection interpretation: Thompson & Duncan 2001; Lyutikov 2003, 2006

Physics of Ultra-strong Field Reconnection

(Uzdensky 2011)

• Critical Quantum Magnetic Field:

$$\hbar\Omega_e = m_e c^2 \Rightarrow B_* \equiv \frac{m_e^2 c^3}{e\hbar} \simeq 4.4 \times 10^{13} \,\mathrm{G}\,.$$

• Pressure balance/energy conservation determine layer temperature, T₀: $P_{\text{magn}} = \frac{B_0^2}{8\pi} = P_{\text{rad}} = \frac{a}{3}T_0^4 \Rightarrow \theta_e \equiv \frac{T}{m_ec^2} \simeq 2.2 b^{1/2}$

> \rightarrow relativistically-hot plasma: $T \sim m_e c^2$! ($b \equiv B_0/B_{*}$.)

- Huge pair production: $n(\theta_e \gg 1) \simeq 0.1827 \,\overline{\lambda}_C^{-3} \,\theta_e^3 \simeq 3.2 \times 10^{30} \,\theta_e^3 \,\mathrm{cm}^{-3}$.
- Current layer is dressed in optically-thick pair coat!
- Reconnection becomes a radiative transfer problem!
 (c.f., accretion disks)

Reconnection Switch for GRB Jet Dissipation

(McKinney & Uzdensky 2012)

- Near central engine, pair density huge, plasma is collisional, reconnection is relatively slow.
- At larger distances, B drops, T drops, pairs recombine, density drops.
- Then, reconnection layers become collisionless → switches to faster energy dissipation

Summary

- In contrast to traditional solar-system plasmas, in many high-energy astrophysical systems magnetic reconnection and particle acceleration are often affected by radiation.
- Radiation is our only direct diagnostic of astrophysical reconnection.
- Radiative reconnection is a **new frontier** in reconnection research.
- Examples:
 - Crab PWN γ-ray flares: radiatiation reaction presents strong, but not insurmountable, difficulties for extreme particle acceleration powering ~ 1 GeV synchrotron radiation.
 - Blazar gamma-ray flares: reconnection minijets may give short time-scales, prompt rad. cooling may be important on global transit time-scale;
 - Strong synchrotron cooling in **pulsar** magnetosphere reconnection (LC);
 - Magnetar reconnection: highly collisional, optically thick "dressed" layer;
 - GRB jets: pairs annihilate, photons escape → transition to fast collisionless reconnection.